636 research outputs found
Identification of the prebiotic translation apparatus within the contemporary ribosome
A structural element that could have existed independently in the prebiotic era was identified at the active site of the contemporary ribosome. It is suggested to have functioned as a proto-ribosome catalyzing peptide bond formation and non-coded elongation in the same manner that contemporary ribosomes exert positional catalysis, namely by accommodating the reactants in stereochemistry favourable for inline nucleophilic attack. This simple apparatus is a dimer of self-folding RNA units that could have assembled spontaneously into a symmetrical pocket-like structure, sufficiently efficient to be preserved throughout evolution as the active site of modern ribosomes, thus presenting a conceivable starting point for translation.Here we discuss the proto-ribosome emergence hypothesis and show that the tendency for dimerization, a prerequisite for obtaining the catalytic centre, is linked to the fold of its two components, indicating functional selection at the molecular level in the prebiotic era and supporting the existence of dimeric proto-ribosome
X-ray crystallography at the heart of life science
X-ray crystallography is the fundamental research tool that shaped our notion on biological structure & function at the molecular level. It generates the information vital to understand life processes by providing the information required for creating accurate three-dimensional models (namely mapping the position of each and every atom that makes up the studied object). The use of this method begun in the middle of last century following Max von Laue discovery of the phenomenon of diffraction of X-rays by crystals, and the successful application of this discovery for the determination of the electronic distribution within simple inorganic molecules by Sir William Henry Bragg and his son, William Lawrence Bragg. The idea of extension of this method to biological molecules met initially with considerable skepticism. For over two decades many respected scientists doubted whether it could be done. Yet, despite its bottlenecks (some of which are described below), the superiority of X-ray crystallography over all other approaches for shedding light on functional aspects at the molecular level became evident once the first structure was determined. The power of this method inspired continuous efforts and spectacular innovations, which vastly accelerated its incredible expansion. Consequently, over the last six decades biological crystallography has produced a constantly growing number of structures, some of which were considered formidable. This remarkable advance yielded numerous new insights into intricate functional aspects. Owing to space limitation this article focuses on selected studies performed recently and highlights some recent exciting developments
Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin
BACKGROUND: The bacterial ribosome is a primary target of several classes of antibiotics. Investigation of the structure of the ribosomal subunits in complex with different antibiotics can reveal the mode of inhibition of ribosomal protein synthesis. Analysis of the interactions between antibiotics and the ribosome permits investigation of the specific effect of modifications leading to antimicrobial resistances. Streptogramins are unique among the ribosome-targeting antibiotics because they consist of two components, streptogramins A and B, which act synergistically. Each compound alone exhibits a weak bacteriostatic activity, whereas the combination can act bactericidal. The streptogramins A display a prolonged activity that even persists after removal of the drug. However, the mode of activity of the streptogramins has not yet been fully elucidated, despite a plethora of biochemical and structural data. RESULTS: The investigation of the crystal structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with the clinically relevant streptogramins quinupristin and dalfopristin reveals their unique inhibitory mechanism. Quinupristin, a streptogramin B compound, binds in the ribosomal exit tunnel in a similar manner and position as the macrolides, suggesting a similar inhibitory mechanism, namely blockage of the ribosomal tunnel. Dalfopristin, the corresponding streptogramin A compound, binds close to quinupristin directly within the peptidyl transferase centre affecting both A- and P-site occupation by tRNA molecules. CONCLUSIONS: The crystal structure indicates that the synergistic effect derives from direct interaction between both compounds and shared contacts with a single nucleotide, A2062. Upon binding of the streptogramins, the peptidyl transferase centre undergoes a significant conformational transition, which leads to a stable, non-productive orientation of the universally conserved U2585. Mutations of this rRNA base are known to yield dominant lethal phenotypes. It seems, therefore, plausible to conclude that the conformational change within the peptidyl transferase centre is mainly responsible for the bactericidal activity of the streptogramins and the post-antibiotic inhibition of protein synthesis
Collective Dynamics of the Ribosomal Tunnel Revealed by Elastic Network Modeling
The collective dynamics of the nascent polypeptide exit tunnel are investigated with the computationally efficient elastic network model using normal mode analysis. The calculated normal modes are considered individually and in linear combinations with different coefficients mimicking the phase angles between modes, in order to follow the mechanistic motions of tunnel wall residues. The low frequency fluctuations indicate three distinct regions along the tunnel - the entrance, the neck and the exit – each having distinctly different domain motions. Generally the lining of the entrance region moves in the exit direction, with the exit region having significantly larger motions, but in a perpendicular direction, whereas the confined neck region generally has rotational motions. Especially the universally conserved extensions of ribosomal proteins L4 and L22 located at the narrowest and mechanistically strategic region of tunnel undergo generally anti- or non-correlated motions, which may have an important role in nascent polypeptide gating mechanism. These motions appear to be sufficiently robust so as to be unaffected by the presence of a peptide chain in the tunnel
SLC26A9 is a constitutively active, CFTR-regulated anion conductance in human bronchial epithelia
Human bronchial epithelial (HBE) cells exhibit constitutive anion secretion that is absent in cells from cystic fibrosis (CF) patients. The identity of this conductance is unknown, but SLC26A9, a member of the SLC26 family of CF transmembrane conductance regulator (CFTR)-interacting transporters, is found in the human airway and exhibits chloride channel behavior. We sought differences in the properties of SLC26A9 and CFTR expressed in HEK 293 (HEK) cells as a fingerprint to identify HBE apical anion conductances. HEK cells expressing SLC26A9 displayed a constitutive chloride current that was inhibited by the CFTR blocker GlyH-101 (71 ± 4%, 50 µM) and exhibited a near-linear current–voltage (I-V) relation during block, while GlyH-101–inhibited wild-type (wt)CFTR exhibited a strong inward-rectified (IR) I-V relation. We tested polarized HBE cells endogenously expressing either wt or ΔF508-CFTR for similar activity. After electrical isolation of the apical membrane using basolateral α-toxin permeabilization, wtCFTR monolayers displayed constitutive chloride currents that were inhibited by GlyH-101 (68 ± 6%) while maintaining a near-linear I-V relation. In the absence of blocker, the addition of forskolin stimulated a current increase having a linear I-V; GlyH-101 blocked 69 ± 7% of the current and shifted the I-V relation IR, consistent with CFTR activation. HEK cells coexpressing SLC26A9 and wtCFTR displayed similar properties, as well as forskolin-stimulated currents that exceeded the sum of those in cells separately expressing SLC26A9 or wtCFTR, and an I-V relation during GlyH-101 inhibition that was moderately IR, indicating that SLC26A9 contributed to the stimulated current. HBE cells from CF patients expressed SLC26A9 mRNA, but no constitutive chloride currents. HEK cells coexpressing SLC26A9 with ΔF508-CFTR also failed to exhibit SLC26A9 current. We conclude that SLC26A9 functions as an anion conductance in the apical membranes of HBE cells, it contributes to transepithelial chloride currents under basal and cAMP/protein kinase A–stimulated conditions, and its activity in HBE cells requires functional CFTR
- …