151 research outputs found

    The aryl hydrocarbon receptor instructs the immunomodulatory profile of a subset of Clec4a4 eosinophils unique to the small intestine

    Get PDF
    C-type lectin domain family 4, member a4 (Clec4a4) is a C-type lectin inhibitory receptor specific for glycans thought to be exclusively expressed on murine CD8α− conventional dendritic cells. Using newly generated Clec4a4-mCherry knock-in mice, we identify a subset of Clec4a4-expressing eosinophils uniquely localized in the small intestine lamina propria. Clec4a4+ eosinophils evinced an immunomodulatory signature, whereas Clec4a4− eosinophils manifested a proinflammatory profile. Clec4a4+ eosinophils expressed high levels of aryl hydrocarbon receptor (Ahr), which drove the expression of Clec4a4 as well as other immunomodulatory features, such as PD-L1. The abundance of Clec4a4+ eosinophils was dependent on dietary AHR ligands, increased with aging, and declined in inflammatory conditions. Mice lacking AHR in eosinophils expanded innate lymphoid cells of type 2 and cleared Nippostrongylus brasiliensis infection more effectively than did wild-type mice. These results highlight the heterogeneity of eosinophils in response to tissue cues and identify a unique AHR-dependent subset of eosinophils in the small intestine with an immunomodulatory profile

    Modified Whole-Mount In situ Hybridization Protocol for the Detection of Transgene Expression in Electroporated Chick Embryos

    Get PDF
    hybridization. hybridization (WISH).Here we describe a modification to the WISH protocol that is essential to prevent DNA cross-hybridization and to specifically detect transgene mRNA transcripts in electroporated embryos. Our optimized WISH procedure can be applied not only to electroporated chick embryos but also to other embryos or adult tissues that have been transfected with large amounts of reporter- or expression construct DNA

    Wp index: A new substorm index derived from high-resolution geomagnetic field data at low latitude

    Get PDF
    Geomagnetic field data with high time resolution (typically 1 s) have recently become more commonly acquired by ground stations. Such high time resolution data enable identifying Pi2 pulsations which have periods of 40–150 s and irregular (damped) waveforms. It is well-known that pulsations of this type are clearly observed at mid- and low-latitude ground stations on the nightside at substorm onset. Therefore, with 1-s data from multiple stations distributed in longitude around the Earth's circumference, substorm onset can be regularly monitored. In the present study we propose a new substorm index, the Wp index (Wave and planetary), which reflects Pi2 wave power at low-latitude, using geomagnetic field data from 11 ground stations. We compare the Wp index with the AE and ASY indices as well as the electron flux and magnetic field data at geosynchronous altitudes for 11 March 2010. We find that significant enhancements of the Wp index mostly coincide with those of the other data. Thus the Wp index can be considered a good indicator of substorm onset. The Wp index, other geomagnetic indices, and geosynchronous satellite data are plotted in a stack for quick and easy search of substorm onset. The stack plots and digital data of the Wp index are available at the Web site (http://s-cubed.info) for public use. These products would be useful to investigate and understand space weather events, because substorms cause injection of intense fluxes of energetic electrons into the inner magnetosphere and potentially have deleterious impacts on satellites by inducing surface charging

    Repercussion of megakaryocyte-specific Gata1 Loss on megakaryopoiesis and the hematopoietic precursor compartment

    Get PDF
    During hematopoiesis, transcriptional programs are essential for the commitment and differentiation of progenitors into the different blood lineages. GATA1 is a transcription factor expressed in several hematopoietic lineages and essential for proper erythropoiesis and megakaryopoiesis. Megakaryocyte-specific genes, such as GP1BA, are known to be directly regulated by GATA1. Mutations in GATA1 can lead to dyserythropoietic anemia and pseudo gray-platelet syndrome. Selective loss of Gata1 expression in adult mice results in macrothrombocytopenia with platelet dysfunction, characterized by an excess of immature megakaryocytes. To specifically analyze the impact of Gata1 loss in mature committed megakaryocytes, we generated Gata1-Lox|Pf4-Cre mice (Gata1cKOMK). Consistent with previous findings, Gata1cKOMK mice are macrothrombocytopenic with platelet dysfunction. Supporting this notion we demonstrate that Gata1 regulates directly the transcription of Syk, a tyrosine kinase that functions downstream of Clec2 and GPVI receptors in megakaryocytes and platelets. Furthermore, we show that Gata1cKOMK mice display an additional aberrant megakaryocyte differentiation stage. Interestingly, these mice present a misbalance of the multipotent progenitor compartment and the erythroid lineage, which translates into compensatory stress erythropoiesis and splenomegaly. Despite the severe thrombocytopenia, Gata1cKOMK mice display a mild reduction of TPO plasma levels, and Gata1cK-OMK megakaryocytes show a mild increase in Pf4 mRNA levels; such a misbalance might be behind the general hematopoietic defects observed, affecting locally normal TPO and Pf4 levels at hematopoietic stem cell niches. © 2016 Meinders et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Brain Training Game Improves Executive Functions and Processing Speed in the Elderly: A Randomized Controlled Trial

    Get PDF
    The beneficial effects of brain training games are expected to transfer to other cognitive functions, but these beneficial effects are poorly understood. Here we investigate the impact of the brain training game (Brain Age) on cognitive functions in the elderly.Thirty-two elderly volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). This study was completed by 14 of the 16 members in the Brain Age group and 14 of the 16 members in the Tetris group. To maximize the benefit of the interventions, all participants were non-gamers who reported playing less than one hour of video games per week over the past 2 years. Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Each group played for a total of about 20 days. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into four categories (global cognitive status, executive functions, attention, and processing speed). Results showed that the effects of the brain training game were transferred to executive functions and to processing speed. However, the brain training game showed no transfer effect on any global cognitive status nor attention.Our results showed that playing Brain Age for 4 weeks could lead to improve cognitive functions (executive functions and processing speed) in the elderly. This result indicated that there is a possibility which the elderly could improve executive functions and processing speed in short term training. The results need replication in large samples. Long-term effects and relevance for every-day functioning remain uncertain as yet.UMIN Clinical Trial Registry 000002825

    The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error

    Get PDF
    It is widely accepted that unexpected sensory consequences of self‐action engage the cerebellum. However, we currently lack consensus on where in the cerebellum, we find fine‐grained differentiation to unexpected sensory feedback. This may result from methodological diversity in task‐based human neuroimaging studies that experimentally alter the quality of self‐generated sensory feedback. We gathered existing studies that manipulated sensory feedback using a variety of methodological approaches and performed activation likelihood estimation (ALE) meta‐analyses. Only half of these studies reported cerebellar activation with considerable variation in spatial location. Consequently, ALE analyses did not reveal significantly increased likelihood of activation in the cerebellum despite the broad scientific consensus of the cerebellum's involvement. In light of the high degree of methodological variability in published studies, we tested for statistical dependence between methodological factors that varied across the published studies. Experiments that elicited an adaptive response to continuously altered sensory feedback more frequently reported activation in the cerebellum than those experiments that did not induce adaptation. These findings may explain the surprisingly low rate of significant cerebellar activation across brain imaging studies investigating unexpected sensory feedback. Furthermore, limitations of functional magnetic resonance imaging to probe the cerebellum could play a role as climbing fiber activity associated with feedback error processing may not be captured by it. We provide methodological recommendations that may guide future studies
    corecore