36 research outputs found

    HLA RNA Sequencing With Unique Molecular Identifiers Reveals High Allele-Specific Variability in mRNA Expression

    Get PDF
    The HLA gene complex is the most important single genetic factor in susceptibility to most diseases with autoimmune or autoinflammatory origin and in transplantation matching. Most studies have focused on the vast allelic variation in these genes; only a few studies have explored differences in the expression levels of HLA alleles. In this study, we quantified mRNA expression levels of HLA class I and II genes from peripheral blood samples of 50 healthy individuals. The gene- and allele-specific mRNA expression was assessed using unique molecular identifiers, which enabled PCR bias removal and calculation of the number of original mRNA transcripts. We identified differences in mRNA expression between different HLA genes and alleles. Our results suggest that HLA alleles are differentially expressed and these differences in expression levels are quantifiable using RNA sequencing technology. Our method provides novel insights into HLA research, and it can be applied to quantify expression differences of HLA alleles in various tissues and to evaluate the role of this type of variation in transplantation matching and susceptibility to autoimmune diseases.Peer reviewe

    Human thymic T cell repertoire is imprinted with strong convergence to shared sequences

    Get PDF
    A highly diverse repertoire of T cell antigen receptors (TCR) is created in the thymus by recombination of gene segments and the insertion or deletion of nucleotides at the junctions. Using next-generation TCR sequencing we define here the features of recombination and selection in the human TCR alpha and TCR beta locus, and show that a strikingly high proportion of the repertoire is shared by unrelated individuals. The thymic TCRa nucleotide repertoire was more diverse than TCR beta, with 4.1 x 10(6) vs. 0.81 x 10(6) unique clonotypes, and contained nonproductive clonotypes at a higher frequency (69.2% vs. 21.2%). The convergence of distinct nucleotide clonotypes to the same amino acid sequences was higher in TCRa than in TCR beta repertoire (1.45 vs. 1.06 nucleotide sequences per amino acid sequence in thymus). The gene segment usage was biased, and generally all individuals favored the same genes in both TCR alpha and TCR beta loci. Despite the high diversity, a large fraction of the repertoire was found in more than one donor. The shared fraction was bigger in TCR alpha than TCR beta repertoire, and more common in in-frame sequences than in nonproductive sequences. Thus, both biases in rearrangement and thymic selection are likely to contribute to the generation of shared repertoire in humans.Peer reviewe

    Characterization of human T cell receptor repertoire data in eight thymus samples and four related blood samples

    Get PDF
    T cell receptor (TCR) is a heterodimer consisting of TCR alpha and TCR beta chains that are generated by somatic recombination of multiple gene segments. Nascent TCR repertoire undergoes thymic selections where non-functional and potentially autoreactive receptors are removed. During the last years, the development of high-throughput sequencing technology has allowed a large scale assessment of TCR repertoire and multiple analysis tools are now also available. In our recent manuscript, Human thymic T cell repertoire is imprinted with strong convergence to shared sequences [1], we show highly overlapping thymic TCR repertoires in unrelated individuals. In the current Data in Brief article, we provide a more detailed characterization of the basic features of these thymic and related peripheral blood TCR repertoires. The thymus samples were collected from eight infants undergoing corrective cardiac surgery, two of whom were monozygous twins [2]. In parallel with the surgery, a small aliquot of peripheral blood was drawn from four of the donors. Genomic DNA was extracted from mechanically released thymocytes and circulating leukocytes. The sequencing of TCR alpha and TCR beta repertoires was performed at ImmunoSEQ platform (Adaptive Biotechnologies). The obtained repertoire data were analysed applying relevant features from immunoSEQ (R) 3.0 Analyzer (Adaptive Biotechnologies) and a freely available VDJTools software package for programming language R [3]. The current data analysis displays the basic features of the sequenced repertoires including observed TCR diversity, various descriptive TCR diversity measures, and V and J gene usage. In addition, multiple methods to calculate repertoire overlap between two individuals are applied. The raw sequence data provide a large database of reference TCRs in healthy individuals at an early developmental stage. The data can be exploited to improve existing computational models on TCR repertoire behaviour as well as in the generation of new models. (C) 2021 The Authors. Published by Elsevier Inc.Peer reviewe

    Dissecting the contribution of single nucleotide polymorphisms in CCR9 and CCL25 genomic regions to the celiac disease phenotype

    Get PDF
    Purpose and objectives: Given their role in homing immune cells to the intestine, CC motif chemokine receptor 9 (CCR9) and its specific ligand CC motif chemokine ligand 25 (CCL25) are interesting candidate genes for celiac disease. These genes are located in regions previously shown to be associated with or linked to celiac disease, but no investigations on their association with various celiac disease phenotypes have so far been conducted. Here we studied such associations of both genotyped and imputed single nucleotide polymorphisms (SNPs) with either regulatory function or exonic location of the CCR9 and CCL25 loci. Results: Exploiting a carefully phenotyped cohort of 625 celiac disease patients and 1817 non-celiac controls, we identified that multiple SNPs with predicted regulatory function (RegulomeDB score 0.05). Conclusions: We conclude that SNPs in the region of CCR9 and CCL25 with predicted functional effect or exonic localization likely contribute only modestly to various celiac disease phenotypes.Peer reviewe

    Deep sequencing of blood and gut T-cell receptor beta-chains reveals gluten-induced immune signatures in celiac disease

    Get PDF
    Celiac disease (CD) patients mount an abnormal immune response to gluten. T-cell receptor (TCR) repertoires directed to some immunodominant gluten peptides have previously been described, but the global immune response to in vivo gluten exposure in CD has not been systematically investigated yet. Here, we characterized signatures associated with gluten directed immune activity and identified gluten-induced T-cell clonotypes from total blood and gut TCR repertoires in an unbiased manner using immunosequencing. CD patient total TCR repertoires showed increased overlap and substantially altered TRBV-gene usage in both blood and gut samples, and increased diversity in the gut during gluten exposure. Using differential abundance analysis, we identified gluten-induced clonotypes in each patient that were composed of a large private and an important public component. Hierarchical clustering of public clonotypes associated with dietary gluten exposure identified subsets of highly similar clonotypes, the most proliferative of which showing significant enrichment for the motif ASS[LF] R[SW][TD][DT][TE][QA][YF] in PBMC repertoires. These results show that CD-associated clonotypes can be identified and that common gluten associated immune response features can be characterized in vivo from total repertoires, with potential use in disease stratification and monitoring.Peer reviewe

    Identifying the inheritable component of human thymic T cell repertoire generation in monozygous twins

    Get PDF
    We have analyzed T cell receptor repertoires in a unique set of thymus samples from a pair of monozygotic twins. While genetics affect the V(D)J rearrangement and generation of junctional sequences, the thymic selections seem largely stochastic and import no detectable inheritable effect at clonal level.Non peer reviewe

    Independent and cumulative coeliac disease-susceptibility loci are associated with distinct disease phenotypes

    Get PDF
    The phenotype of coeliac disease varies considerably for incompletely understood reasons. We investigated whether established coeliac disease susceptibility variants (SNPs) are individually or cumulatively associated with distinct phenotypes. We also tested whether a polygenic risk score (PRS) based on genome-wide associated (GWA) data could explain the phenotypic variation. The phenotypic association of 39 non-HLA coeliac disease SNPs was tested in 625 thoroughly phenotyped coeliac disease patients and 1817 controls. To assess their cumulative effects a weighted genetic risk score (wGRS39) was built, and stratified by tertiles. In our PRS model in cases, we took the summary statistics from the largest GWA study in coeliac disease and tested their association at eight P value thresholds (P-T) with phenotypes. Altogether ten SNPs were associated with distinct phenotypes after correction for multiple testing (P-EMP2 1.62 for having coeliac disease-related symptoms during childhood, a more severe small bowel mucosal damage, malabsorption and anaemia. PRS was associated only with dermatitis herpetiformis (P-T = 0.2, P-EMP2 = 0.02). Independent coeliac disease-susceptibility loci are associated with distinct phenotypes, suggesting that genetic factors play a role in determining the disease presentation. Moreover, the increased number of coeliac disease susceptibility SNPs might predispose to a more severe disease course.Peer reviewe

    Steroidogenic factor 1 (NR5A1) induces multiple transcriptional changes during differentiation of human gonadal-like cells

    Get PDF
    Nuclear receptor subfamily 5 group A member 1 (NR5A1) encodes steroidogenic factor 1 (SF1), a key regulatory factor that determines gonadal development and coordinates endocrine functions. Here, we have established a stem cell-based model of human gonadal development and applied it to evaluate the effects of NR5A1 during the transition from bipotential gonad to testicular cells. We combined directed differentiation of human induced pluripotent stem cells (46,XY) with activation of endogenous NR5A1 expression by conditionally-inducible CRISPR activation. The resulting male gonadal-like cells expressed several Sertoli cell transcripts, secreted anti-Müllerian hormone and responded to follicle-stimulating hormone by producing sex steroid intermediates. These characteristics were not induced without NR5A1 activation. A total of 2691 differentially expressed genetic elements, including both coding and non-coding RNAs, were detected immediately following activation of NR5A1 expression. Of those, we identified novel gonad-related putative NR5A1 targets, such as SCARA5, which we validated also by immunocytochemistry. In addition, NR5A1 activation was associated with dynamic expression of multiple gonad- and infertility-related differentially expressed genes. In conclusion, by combining targeted differentiation and endogenous activation of NR5A1 we have for the first time, been able to examine in detail the effects of NR5A1 in early human gonadal cells. The model and results obtained provide a useful resource for future investigations exploring the causative reasons for gonadal dysgenesis and infertility in humans.</p
    corecore