92 research outputs found

    Nanostructural evolution of alkali-activated mineral wools

    Get PDF
    Mineral wools are the most widely used building insulation material worldwide. Annually, 2.5 million tonnes of mineral wool waste are generated in the EU alone, and this is a largely unutilised material that is landfilled or incinerated. However, mineral wool wastes are promising precursors for production of alkali-activated cementitious binders due to their favourable chemical and mineralogical composition and high surface area. Alkali-activation is therefore a valuable route for valorisation of large quantities of mineral wool waste. This study resolves the phase assemblage and nanostructure of reaction products formed upon alkali activation of stone wool and glass wool by sodium hydroxide and sodium silicate solutions with X-ray diffraction, electron microscopy and solid state nuclear magnetic resonance spectroscopy experiments probing ^27Al and ^29Si. The stone wool-based alkali-activated binder comprises an amorphous sodium- and aluminium-substituted calcium silicate hydrate (C-(N-)A-S-H) gel, an amorphous sodium aluminosilicate hydrate (N-A-S-H) gel and small amounts of the layered double hydroxide phase quintinite and zeolite F. The glass wool-based alkali-activated binder comprises an amorphous Ca- and Al-substituted sodium silicate (N-(C-)(A-)S–H) gel. Gel chemical composition and reaction kinetics of alkali-activated mineral wools are shown to be dependent on the activating solution chemistry, with reaction rate and extent promoted by inclusion of a source of soluble Si in the reaction mixture. This work provides the most advanced description of the chemistry and structure of alkali-activated mineral wools to date, yielding new insight that is essential in developing valorisation pathways for mineral wools by alkali activation and providing significant impetus for development of sustainable construction materials

    Influence of activator type on reaction kinetics, setting time, and compressive strength of alkali-activated mineral wools

    Get PDF
    Alkali activation is a promising utilisation route for mineral wool wastes, due to suitable chemical composition, high reactivity, and surface area. One key factor in the development of alkali-activated binders is the selection of the suitable alkali activator. Here, the effect of sodium hydroxide, sodium silicate, sodium aluminate, and sodium carbonate solution on the alkali-activation kinetics of two main types of mineral wools, stone wool and glass wool, is investigated. Setting time and compressive strength development results are presented, which are explained and discussed in the context of isothermal calorimeter data obtained at temperature of 40 °C. Sodium hydroxide and sodium silicate solutions provided fast reaction with both mineral wools, evidenced by high heat release, high early strength, and fast setting. The reaction with sodium aluminate solution took several days to initiate, but it produced high compressive strength after 28 days of curing with both mineral wools. Glass wool reacted and hardened rapidly with sodium carbonate solution, but stone wool reacted slowly with sodium carbonate and exhibited a low extent of reaction, likely due to lower extent of reaction of stone wool under less alkaline conditions. These results show that mineral wool alkali activation kinetics and binder gel formation are controlled by the activator type and highlight the importance of choosing the most appropriate activator for each desired application

    A Directly-Written Monolithic Waveguide-Laser Incorporating a DFB Waveguide-Bragg Grating

    Full text link
    We report the fabrication and performance of the first C-band directly-written monolithic waveguide-laser. The waveguide-laser device was created in an Erbium and Ytterbium doped phosphate glass host and consisted of an optical waveguide that included a distributed feedback Bragg grating structure. The femtosecond laser direct-write technique was used to create both the waveguide and the waveguide-Bragg grating simultaneously and in a single processing step. The waveguide-laser was optically pumped at approximately 980 nm and lased at 1537nm with a bandwidth of less than 4 pm.Comment: 6 pages, 13 references, 4 figure

    Studies on passive and active silver-sodium ion-exchanged glass waveguides and devices

    Get PDF
    In this paper, we review our recent work on exploring and developing new techniques for planar lightwave circuits utilizing silver-sodium ion exchange. In the experiments, two special kinds of glass substrates have been used: aluminoborosilicate glass (also called BGG31) specially developed for passive ion-exchanged waveguides and phosphate glass (commercial name IOG-1) designed for waveguide laser applications. Phosphate glass can be doped with large amounts of rare earth ions without significant lifetime reduction. This enables fabrication of short-cavity waveguide lasers, a desirable feature for example in high-repetition rate modelocked lasers operating at 1550 nm wavelength region. Birefringence properties of buried molten salt ion-exchanged waveguides in BGG31 glass are presented in detail. Photosensitivity properties of both undoped and Er-Yb-codoped IOG-1 glass are discussed. A new approach to fabricate waveguide Bragg gratings through UV exposure in IOG-1 glass will be presented

    Sustainable iron-rich cements: Raw material sources and binder types

    Get PDF
    The bulk of the cement industry's environmental burden is from the calcareous source. Calcium is mostly available naturally as limestone (CaCO3), where almost half of the mass is eventually released as CO2 during clinker manufacture. Iron (Fe) is the fourth most common element in the Earth's crust surpassed only by oxygen, silicon, and aluminium; therefore, potential raw materials for alternative cements can contain significant amounts of iron. This review paper discusses in detail the most abundantly available Fe-rich natural resources and industrial by-products and residues, establishing symbiotic supply chains from various sectors. The discussion then focusses on the impact of high iron content in clinker and on ferrite (thermo)chemistry, as well as the importance of iron speciation on its involvement in the reactions as supplementary cementitious material or alkali-activated materials, and the technical quality that can be achieved from sustainable Fe-rich cements

    Dissolution Control of Mg by Cellulose Acetate–Polyelectrolyte Membranes

    Get PDF
    Cellulose acetate (CA)-based membranes are used for Mg dissolution control: the permeability of the membrane is adjusted by additions of the polyelectrolyte, poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA). Spin-coated films were characterized with FT-IR, and once exposed to an aqueous solution the film distends and starts acting as a membrane which controls the flow of ions and H2 gas. Electrochemical measurements (linear sweep voltammograms, open-circuit potential, and polarization) show that by altering the CA:PDMAEMA ratio the dissolution rate of Mg can be controlled. Such a control over Mg dissolution is crucial if Mg is to be considered as a viable, temporary biomedical implant material. Furthermore, the accumulation of corrosion products between the membrane and the sample diminishes the undesirable effects of high local pH and H2 formation which takes place during the corrosion process.Peer reviewe

    Surface layer alteration of multi-oxide silicate glasses at a near-neutral pH in the presence of citric and tartaric acid

    No full text
    Abstract This study aimed at determining the chemical alterations occurring at the surface of multi-oxide silicate glasses in the presence of organic ligands─citrate and tartrate─at a near-neutral pH. Batch surface titration experiments for basaltic glass and blast furnace slag (BFS) were conducted in the range of 6.4 < pH < 8 to investigate the element release, and speciation and solid phase saturation were modeled with PHREEQC software. Surface sensitive XPS and zeta potential measurements were used to characterize the alterations occurring on the surface. The results show that, while Al/Si and Fe/Si surface molar ratios of the raw materials increase at a near-neutral pH, the presence of organic ligands prevents the accumulation of Al and Fe on the surface and increases their concentration in the solution, particularly at pH 6.4. The Al- and Fe-complexing ligands decrease the effective concentration of these cations in the solution, consequently decreasing the surface cation/Si ratio, which destabilizes the silicate surface and increases the extent of dissolution by 300% within the 2 h experiment. Based on the thermodynamic modeling, 1:1 metal-to-ligand complexes are the most prevalent aqueous species under these experimental conditions. Moreover, changes in Ca/Si and Mg/Si surface ratios are observed in the presence of organic ligands; the direction of the change depends on the type of ligand and pH. The coordination of Al and Fe on the surface is different depending on the ligand and pH. This study provides a detailed description of the compositional changes occurring between the surface of multi-oxide silicate materials and the solution in the presence of citrate and tartrate. The surface layer composition is crucial not only for understanding and controlling the dissolution of these materials but also for determining the activated surface complexes and secondary minerals that they evolve into

    Alkali activation-granulation of fluidized bed combustion fly ashes

    No full text
    Abstract Biomass, such as wood, binds CO2 as it grows, and is thus considered an environmentally friendly alternative fuel to replace coal. In Finland, biomass is typically co-combusted with peat, and also municipal waste is becoming more common as a fuel for power plants. Wood, peat and waste-based fuels are typically burned in fluidized bed combustion (FBC) boilers. Ash is the inorganic, incombustible residue resulting from combustion. The annual production of biomass and peat ash in Finland is 600 000 tonnes, and this amount is likely to increase in the future, since the use of coal for energy production will be discontinued during the 2020s. Unfortunately, FBC ash is still largely unutilized at the moment and is mainly dumped in landfills. The general aim of this thesis was to generate information which could potentially improve the utilization of FBC ash by alkali activation. The specific objective was to produce geopolymer aggregates by means of a simultaneous alkali activation-granulation process. It was shown that geopolymer aggregates with physical properties comparable to commercial lightweight expanded clay aggregates (LECAs) can be produced from FBC fly ash containing heavy metals. Although the ashes were largely unreactive and no new crystalline phases were formed by alkali activation, a new amorphous phase was observed in the XRD patterns, possibly representing micron-sized calcium aluminate silicate hydrate-type gels. The heavy metal immobilization efficiency of alkali activation varied with the type of fly ash. Good stabilization was generally obtained for cationic metals such as Ba, Pb and Zn, but in common with the results obtained with alkali activation of coal fly ash, anionic metals became leachable after alkali activation. The efficiency of immobilization depended on the physical and chemical properties of the fly ash and was not related to the total content of the element. All the geopolymer aggregates met the criteria for a lightweight aggregate (LWA) as defined by EN standard 13055-1. Their strength depended on the reactivity and particle size distribution of the fly ash. Mortars and concretes prepared with such geopolymer aggregates had higher mechanical strength, higher dynamic modulus of elasticity and higher density than concrete produced with commercial LECA, while exhibiting similar rheology and workability.Tiivistelmä Biopolttoaineet, esimerkiksi puu, ovat ympäristöystävällinen vaihtoehto kivihiilelle, koska ne sitovat hiilidioksidia kasvaessaan. Suomessa biopolttoaineita poltetaan tyypillisesti turpeen kanssa, ja nykyään myös jätteen hyödyntäminen polttoaineena on yleistynyt. Puu, turve ja jätepolttoaineet poltetaan tyypillisesti leijupetipoltto-tekniikalla. Tuhka on polton epäorgaaninen, palamaton jäännös. Puun ja turpeen tuhkaa tuotetaan Suomessa 600 000 tonnia vuodessa ja määrän odotetaan kasvavan, sillä kivihiilen poltto lopetetaan 2020-luvulla. Leijupetipolton tuhkaa ei tällä hetkellä juurikaan hyödynnetä ja tuhka päätyykin pääasiassa kaatopaikoille. Tämän tutkielman päämääränä oli tuottaa tietoa, joka parantaisi leijupetipolton tuhkien hyödyntämistä alkali-aktivaatiolla. Erityisesti tavoitteena oli valmistaa geopolymeeriaggregaatteja yhtäaikaisella alkali-aktivaatiolla ja rakeistuksella. Tutkielmassa osoitettiin, että raskasmetalleja sisältävistä tuhkista valmistettujen geopolymeeriaggregaattien fysikaaliset ominaisuudet ovat vertailukelpoiset kaupallisten kevytsora-aggregaattien (LECA) kanssa. Vaikka tuhkien reaktiivisuus oli matala, ja uusia kidefaaseja ei muodostunut alkaliaktivaatiolla, uusi amorfinen faasi havaittiin XRD-mittauksissa. Uusi amorfinen faasi oli mahdollisesti mikrometrikokoluokan kalsium-aluminaatti-silikaatti-hydraatti-tyyppinen rakenne. Raskasmetallien stabiloinnin tehokkuus vaihteli tuhkien välillä. Kationiset metallit, kuten barium, lyijy ja sinkki, stabiloituivat pääasiassa hyvin, mutta anionisten metallin liukoisuus kasvoi alkali-aktivoinnin myötä. Stabiloinnin tehokkuus riippui tuhkien fysikaalisista ja kemiallisista ominaisuuksista, mutta raskasmetallin kokonaispitoisuudella ei ollu vaikutusta. Kaikki geopolymeeriaggregaatit olivat kevytsora-aggregaatteja standardin EN 13055-1 mukaisesti. Aggregaattien lujuus riippui tuhkan reaktiivisuudesta ja partikkelikokojakaumasta. Geopolymeeriaggregaateilla valmistettujen laastien ja betonien mekaaninen lujuus, Youngin moduuli ja tiheys olivat korkeampia kuin kaupallisella kevytsora-aggregaateilla valmistetut, vaikka niiden reologia ja työstettävyys olivat samanlaisia
    • …
    corecore