7 research outputs found

    Weighted Gene Co-expression Network Analysis for RNA-Sequencing Data of the Varicose Veins Transcriptome

    Get PDF
    ObjectiveVaricose veins are a common problem worldwide and can cause significant impairments in health-related quality of life, but the etiology and pathogenesis remain not well defined. This study aims to elucidate transcriptomic regulations of varicose veins by detecting differentially expressed genes, pathways and regulator genes.MethodsWe harvested great saphenous veins (GSV) from patients who underwent coronary artery bypass grafting (CABG) and varicose veins from conventional stripping surgery. RNA-Sequencing (RNA-Seq) technique was used to obtain the complete transcriptomic data of both GSVs from CABG patients and varicose veins. Weighted Gene Co-expression network analysis (WGCNA) and further analyses were then carried out with the aim to elucidate transcriptomic regulations of varicose veins by detecting differentially expressed genes, pathways and regulator genes.ResultsFrom January 2015 to December 2016, 7 GSVs from CABG patients and 13 varicose veins were obtained. WGCNA identified 4 modules. In the brown module, gene ontology (GO) analysis showed that the biological processes were focused on response to stimulus, immune response and inflammatory response, etc. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that the biological processes were focused on cytokine-cytokine receptor interaction and TNF signaling pathway, etc. In the gray module, GO analysis showed that the biological processes were skeletal myofibril assembly related. The immunohistochemistry staining showed that the expression of ASC, Caspase-1 and NLRP3 were increased in GSVs from CABG patients compared with varicose veins. Histopathological analysis showed that in the varicose veins group, the thickness of vascular wall, tunica intima, tunica media and collagen/smooth muscle ratio were significantly increased, and that the elastic fiber/internal elastic lamina ratio was decreased.ConclusionThis study shows that there are clear differences in transcriptomic information between varicose veins and GSVs from CABG patients. Some inflammatory RNAs are down-regulated in varicose veins compared with GSVs from CABG patients. Skeletal myofibril assembly pathway may play a crucial role in the pathogenesis of varicose veins. Characterization of these RNAs may provide new targets for understanding varicose veins diagnosis, progression, and treatment

    Abdominal wall hernia repair: from prosthetic meshes to smart materials

    No full text
    Hernia reconstruction is one of the most frequently practiced surgical procedures worldwide. Plastic surgery plays a pivotal role in reestablishing desired abdominal wall structure and function without the drawbacks traditionally associated with general surgery as excessive tension, postoperative pain, poor repair outcomes, and frequent recurrence. Surgical meshes have been the preferential choice for abdominal wall hernia repair to achieve the physical integrity and equivalent components of musculofascial layers. Despite the relevant progress in recent years, there are still unsolved challenges in surgical mesh design and complication settlement. This review provides a systemic summary of the hernia surgical mesh development deeply related to abdominal wall hernia pathology and classification. Commercial meshes, the first-generation prosthetic materials, and the most commonly used repair materials in the clinic are described in detail, addressing constrain side effects and rational strategies to establish characteristics of ideal hernia repair meshes. The engineered prosthetics are defined as a transit to the biomimetic smart hernia repair scaffolds with specific advantages and disadvantages, including hydrogel scaffolds, electrospinning membranes, and three-dimensional patches. Lastly, this review critically outlines the future research direction for successful hernia repair solutions by combing state-of-the-art techniques and materials

    Advancing breast cancer diagnosis with a near-infrared fluorescence imaging smart sensor for estrogen/progesterone receptor detection

    No full text
    Abstract Molecular-genetic imaging has greatly advanced clinical diagnosis and prognosis monitoring. However, the specific visualization of intracellular proteins such as estrogen receptor (ER) and progesterone receptor (PR) remains an elusive goal. Here, we highlight a novel method for selectively detecting ER/PR positive tumors using genetically engineered responsive elements. Our study demonstrates that the double responsive elements of ER/PR exhibit the most sensitivity to the steroid receptors in breast cancers. By utilizing a cationic polymer vector, we constructed a responsive element-fluorescence protein system that can selectively image ER/PR positive breast cancers in murine models under a near-infrared laser. This non-invasive imaging achieved high-resolution detection without death or serious anaphylactic activity in the animals. Our findings suggest that the reporter system consisting of steroid receptor response elements and near-infrared proteins provides a practical system for identifying biomarkers and advancing cancer diagnosis and therapy

    Carbothermal synthesis of micro-scale spherical AlN granules with CaF2 additive

    No full text
    In this work, we purposefully reported a simple yet efficient carbothermal synthesis strategy to prepare micro scale spherical AlN granules just by using CaF2 as promoting additive. The effects of synthesis parameters, such as CaF2 content, N2 gas pressure, reaction temperature, upon the nitridation rate, surface morphology and particle size were comprehensively investigated. It was established that elevated N2 gas pressure, high reaction temperature and abundant Ca aluminates liquid synergistically promoted the formation of micro scale spherical AlN granules. Additionally, the reduction and nitrida tion of intermediate Ca aluminates played a significant role in improving the nitridation rate, increasing the particle size and forming the smooth spherical appearance. More significantly, the underlying re action mechanism in the carbothermal synthesis of spherical AlN with CaF2 additive was also tentatively proposed
    corecore