36 research outputs found
Summary of the workshop on methodologies for environmental public health tracking of air pollution effects
The US Centers for Disease Control and Prevention established the Environmental Public Health Tracking (EPHT) program to support state and local projects that characterize the impact of the environment on health. The projects involve compiling, linking, analyzing, and disseminating environmental and health surveillance information, thereby engaging stakeholders and guiding actions to improve public health. One of the EPHT objectives is to track the public health impact of ambient air pollution with analyses that are timely and relevant to state and local stakeholders. To address methodological issues relevant to this objective, in January 2008, government officials and researchers from the USA, Canada, and Europe gathered in Baltimore, Maryland for a 2-day workshop. Using commissioned papers and presentations on key methodological issues as well as examples of previous air pollution impact assessments, work group discussions produced a set of consensus recommendations for the EPHT program. These recommendations noted the need for data that will encourage local stakeholders to support continued progress in air pollution control. The limitations of using only local data for analyses were also noted. To improve local estimates of air pollution health impacts, methods were recommended that “borrow strength” from other evidence. An incremental approach to implementing such methods was recommended. The importance and difficulty of communicating uncertainties in local health impact assessments was emphasized, as was the need for coordination among different agencies conducting health impact assessments
Exposure to traffic pollution, acute inflammation and autonomic response in a panel of car commuters
Background Exposure to traffic pollution has been linked to numerous adverse health endpoints. Despite this, limited data examining traffic exposures during realistic commutes and acute response exists. Objectives: We conducted the Atlanta Commuters Exposures (ACE-1) Study, an extensive panel-based exposure and health study, to measure chemically-resolved in-vehicle exposures and corresponding changes in acute oxidative stress, lipid peroxidation, pulmonary and systemic inflammation and autonomic response. Methods We recruited 42 adults (21 with and 21 without asthma) to conduct two 2-h scripted highway commutes during morning rush hour in the metropolitan Atlanta area. A suite of in-vehicle particulate components were measured in the subjects’ private vehicles. Biomarker measurements were conducted before, during, and immediately after the commutes and in 3 hourly intervals after commutes. Results At measurement time points within 3 h after the commute, we observed mild to pronounced elevations relative to baseline in exhaled nitric oxide, C-reactive-protein, and exhaled malondialdehyde, indicative of pulmonary and systemic inflammation and oxidative stress initiation, as well as decreases relative to baseline levels in the time-domain heart-rate variability parameters, SDNN and rMSSD, indicative of autonomic dysfunction. We did not observe any detectable changes in lung function measurements (FEV1, FVC), the frequency-domain heart-rate variability parameter or other systemic biomarkers of vascular injury. Water soluble organic carbon was associated with changes in eNO at all post-commute time-points (p \u3c 0.0001). Conclusions Our results point to measureable changes in pulmonary and autonomic biomarkers following a scripted 2-h highway commute
Air Pollution–Associated Changes in Lung Function among Asthmatic Children in Detroit
In a longitudinal cohort study of primary-school–age children with asthma in Detroit, Michigan, we examined relationships between lung function and ambient levels of particulate matter ≤ 10 μm and ≤ 2.5 μm in diameter (PM(10) and PM(2.5)) and ozone at varying lag intervals using generalized estimating equations. Models considered effect modification by maintenance corticosteroid (CS) use and by the presence of an upper respiratory infection (URI) as recorded in a daily diary among 86 children who participated in six 2-week seasonal assessments from winter 2001 through spring 2002. Participants were predominantly African American from families with low income, and > 75% were categorized as having persistent asthma. In both single-pollutant and two-pollutant models, many regressions demonstrated associations between higher exposure to ambient pollutants and poorer lung function (increased diurnal variability and decreased lowest daily values for forced expiratory volume in 1 sec) among children using CSs but not among those not using CSs, and among children reporting URI symptoms but not among those who did not report URIs. Our findings suggest that levels of air pollutants in Detroit, which are above the current National Ambient Air Quality Standards, adversely affect lung function of susceptible asthmatic children
Advancing Global Health through Environmental and Public Health Tracking.
Global environmental change has degraded ecosystems. Challenges such as climate change, resource depletion (with its huge implications for human health and wellbeing), and persistent social inequalities in health have been identified as global public health issues with implications for both communicable and noncommunicable diseases. This contributes to pressure on healthcare systems, as well as societal systems that affect health. A novel strategy to tackle these multiple, interacting and interdependent drivers of change is required to protect the population's health. Public health professionals have found that building strong, enduring interdisciplinary partnerships across disciplines can address environment and health complexities, and that developing Environmental and Public Health Tracking (EPHT) systems has been an effective tool. EPHT aims to merge, integrate, analyse and interpret environmental hazards, exposure and health data. In this article, we explain that public health decision-makers can use EPHT insights to drive public health actions, reduce exposure and prevent the occurrence of disease more precisely in efficient and cost-effective ways. An international network exists for practitioners and researchers to monitor and use environmental health intelligence, and to support countries and local areas toward sustainable and healthy development. A global network of EPHT programs and professionals has the potential to advance global health by implementing and sharing experience, to magnify the impact of local efforts and to pursue data knowledge improvement strategies, aiming to recognise and support best practices. EPHT can help increase the understanding of environmental public health and global health, improve comparability of risks between different areas of the world including Low and Middle-Income Countries (LMICs), enable transparency and trust among citizens, institutions and the private sector, and inform preventive decision making consistent with sustainable and healthy development. This shows how EPHT advances global health efforts by sharing recent global EPHT activities and resources with those working in this field. Experiences from the US, Europe, Asia and Australasia are outlined for operating successful tracking systems to advance global health
Framework for a Community Health Observing System for the Gulf of Mexico Region: Preparing for Future Disasters
© Copyright © 2020 Sandifer, Knapp, Lichtveld, Manley, Abramson, Caffey, Cochran, Collier, Ebi, Engel, Farrington, Finucane, Hale, Halpern, Harville, Hart, Hswen, Kirkpatrick, McEwen, Morris, Orbach, Palinkas, Partyka, Porter, Prather, Rowles, Scott, Seeman, Solo-Gabriele, Svendsen, Tincher, Trtanj, Walker, Yehuda, Yip, Yoskowitz and Singer. The Gulf of Mexico (GoM) region is prone to disasters, including recurrent oil spills, hurricanes, floods, industrial accidents, harmful algal blooms, and the current COVID-19 pandemic. The GoM and other regions of the U.S. lack sufficient baseline health information to identify, attribute, mitigate, and facilitate prevention of major health effects of disasters. Developing capacity to assess adverse human health consequences of future disasters requires establishment of a comprehensive, sustained community health observing system, similar to the extensive and well-established environmental observing systems. We propose a system that combines six levels of health data domains, beginning with three existing, national surveys and studies plus three new nested, longitudinal cohort studies. The latter are the unique and most important parts of the system and are focused on the coastal regions of the five GoM States. A statistically representative sample of participants is proposed for the new cohort studies, stratified to ensure proportional inclusion of urban and rural populations and with additional recruitment as necessary to enroll participants from particularly vulnerable or under-represented groups. Secondary data sources such as syndromic surveillance systems, electronic health records, national community surveys, environmental exposure databases, social media, and remote sensing will inform and augment the collection of primary data. Primary data sources will include participant-provided information via questionnaires, clinical measures of mental and physical health, acquisition of biological specimens, and wearable health monitoring devices. A suite of biomarkers may be derived from biological specimens for use in health assessments, including calculation of allostatic load, a measure of cumulative stress. The framework also addresses data management and sharing, participant retention, and system governance. The observing system is designed to continue indefinitely to ensure that essential pre-, during-, and post-disaster health data are collected and maintained. It could also provide a model/vehicle for effective health observation related to infectious disease pandemics such as COVID-19. To our knowledge, there is no comprehensive, disaster-focused health observing system such as the one proposed here currently in existence or planned elsewhere. Significant strengths of the GoM Community Health Observing System (CHOS) are its longitudinal cohorts and ability to adapt rapidly as needs arise and new technologies develop
Characterization of personal exposures to ambient and indoor particulate matter among children with asthma in Detroit, Michigan.
The asthma prevalence among children has increased dramatically and has become a growing concern. A large body of epidemiological data has closely linked mortality and morbidity with elevated mass concentrations of ambient particulate matter (PM); many studies have also implicated PM in asthma exacerbation. To date, intensive studies in urban communities of children's exposures to PM together with detailed measures of their asthma status have not been reported. As part of Community Action Against Asthma, a community-based participatory research project in Detroit, MI, two-week seasonal measurement campaigns were conducted from 1999--2002 in which daily ambient and indoor measurements of PM2.5 and PM10 were collected at two elementary schools representing community-level exposure and exposure in the classroom, respectively. Concurrent measurements of PM2.5 and PM10 inside the homes of 20 asthmatic children, and personal measurements of PM10 for the same 20 children using personal exposure monitors, were also performed. Evaluation of the PM for mass and chemical constituents permitted characterization of the sources directly impacting the children's personal exposures, and the data collected in the multiple environments provides us with a greater basis for source comparison. The children recorded spending, on average, 16 hours at home and five hours at school which represents approximately 88% of their day. The children's mean 24-hour personal exposures to PM10 were consistently greater than the concentrations measured in the ambient environment and in the classroom. Similarly, the environments in which the children spent the most time were reflected in the elemental concentrations in the children's personal exposures. The trace element concentration observed among the children in both smoking and non-smoking households were strongly and significantly correlated to their home concentrations. The main sources of the children's PM10 mass were consistently environmental tobacco smoke, secondary sulfate, and windblown dust, which represent more than half of the source-contributed mass and explained a majority of the day-to-day variability that was observed in the mass. Mass measurements helped in characterizing the magnitude of the children's PM exposure, but the addition of elemental composition data enabled us to gain insight into the causes of elevated exposures and the sources that influenced the variability. These data will be extremely useful when ultimately evaluating potential sources that can lead to the exacerbation of asthma symptoms.Ph.D.Environmental scienceHealth and Environmental SciencesPublic healthUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/124344/2/3137970.pd