93 research outputs found

    Effects of Network Connectivity and Diversity Distribution on Human Collective Ideation

    Full text link
    Human collectives, e.g., teams and organizations, increasingly require participation of members with diverse backgrounds working in networked social environments. However, little is known about how network structure and the diversity of member backgrounds would affect collective processes. Here we conducted three sets of human-subject experiments which involved 617 participants who collaborated anonymously in a collective ideation task on a custom-made online social network platform. We found that spatially clustered collectives with clustered background distribution tended to explore more diverse ideas than in other conditions, whereas collectives with random background distribution consistently generated ideas with the highest utility. We also found that higher network connectivity may improve individuals' overall experience but may not improve the collective performance regarding idea generation, idea diversity, and final idea quality.Comment: 43 pages, 19 figures, 4 table

    High-throughput fluorescence-activated cell sorting for lipid hyperaccumulating Chlamydomonas reinhardtii mutants

    Get PDF
    The genetically tractable microalga Chlamydomonas reinhardtii has many advantages as a model for renewable bioproducts and/or biofuels production. However, one limitation of C. reinhardtii is its relatively low-lipid content compared with some other algal species. To overcome this limitation, we combined ethane methyl sulfonate mutagenesis with fluorescence-activated cell sorting (FACS) of cells stained with the lipophilic stain Nile Red to isolate lipid hyperaccumulating mutants of C. reinhardtii. By manipulating the FACS gates, we sorted mutagenized cells with extremely high Nile Red fluorescence signals that were rarely detected in nonmutagenized populations. This strategy successfully isolated several putative lipid hyperaccumulating mutants exhibiting 23% to 58% (dry weight basis) higher fatty acid contents than their progenitor strains. Significantly, for most mutants, nitrogen starvation was not required to attain high-lipid content nor was there a requirement for a deficiency in starch accumulation. Microscopy of Nile Red stained cells revealed that some mutants exhibit an increase in the number of lipid bodies, which correlated with TLC analysis of triacyglycerol content. Increased lipid content could also arise through increased biomass production. Collectively, our findings highlight the ability to enhance intracellular lipid accumulation in algae using random mutagenesis in conjunction with a robust FACS and lipid yield verification regime. Our lipid hyperaccumulating mutants could serve as a genetic resource for stacking additional desirable traits to further increase lipid production and for identifying genes contributing to lipid hyperaccumulation, without lengthy lipid-induction periods

    Trisomy 21-induced Dysregulation of Microglial Homeostasis in Alzheimer’s Brains is Mediated by USP25

    Get PDF
    阿尔茨海默病(Alzheimer’s disease, AD)是一种最为常见的与记忆、认知能力退化相关的渐进性神经退行性疾病。唐氏综合征(Down’s syndrome, DS)是早发型阿尔茨海默病的一个重要风险因素,作为最常见的智力障碍遗传疾病,厦门大学医学院神经科学研究所王鑫教授团队揭示了治疗阿尔茨海默病和唐氏综合征新的治疗靶点,并且在小鼠模型上利用USP25小分子抑制剂成功地改善了阿尔茨海默病小鼠的认知功能,缓解了神经退行性病变的病理进程。该研究工作由王鑫教授指导完成,厦门大学医学院助理教授郑秋阳和博士生李桂林完成主要实验工作,王世华、朱琳、高月、邓青芳、张洪峰、张丽珊、吴美玲、狄安洁参与了部分研究工作。厦门大学医学院许华曦、赵颖俊和孙灏教授在研究过程中给予大力帮助和支持,清华大学董晨教授提供了Usp25基因敲除小鼠,厦门大学附属妇女儿童医院周裕林教授和郑良楷博士帮助收集了脑组织样品。Down syndrome (DS), caused by trisomy of chromosome 21, is the most significant risk factor for early-onset Alzheimer’s disease (AD); however, underlying mechanisms linking DS and AD remain unclear. Here, we show that triplication of homologous chromosome 21 genes aggravates neuroinflammation in combined murine DS-AD models. Overexpression of USP25, a deubiquitinating enzyme encoded by chromosome 21, results in microglial activation and induces synaptic and cognitive deficits, whereas genetic ablation of Usp25 reduces neuroinflammation and rescues synaptic and cognitive function in 5×FAD mice. Mechanistically, USP25 deficiency attenuates microglia-mediated proinflammatory cytokine overproduction and synapse elimination. Inhibition of USP25 reestablishes homeostatic microglial signatures and restores synaptic and cognitive function in 5×FAD mice. In summary, we demonstrate an unprecedented role for trisomy 21 and pathogenic effects associated with microgliosis as a result of the increased USP25 dosage, implicating USP25 as a therapeutic target for neuroinflammation in DS and AD.This work was supported by the National Natural Science Foundation of China (31871077, 81822014, and 81571176 to X.W.; 81701130 to Q.Z.), the National Key R&D Program of China (2016YFC1305900 to X.W.), the Natural Science Foundation of Fujian Province of China (2017J06021 to X.W.), the Fundamental Research Funds for the Chinese Central Universities (20720150061 to X.W.), and the BrightFocus Foundation (A2018214F to Yingjun Zhao). 该研究工作得到国家重点研发计划项目、国家自然科学基金、福建省自然科学基金、厦门大学校长基金的资助和支持

    Robust H∞ Filtering for Discrete-Time Markov Jump Linear System with Missing Measurements

    No full text
    The problem of robust H∞ filtering is investigated for discrete-time Markov jump linear system (DMJLS) with uncertain parameters and missing measurements. The missing measurements process is modelled as a Bernoulli distributed sequence. A robust H∞ filter is designed and sufficient conditions are established in terms of linear matrix inequalities via a mode-dependent Lyapunov function approach, such that, for all admissible uncertain parameters and missing measurements, the resulting filtering error system is robustly stochastically stable and a guaranteed H∞ performance constraint is achieved. Furthermore, the optimal H∞ performance index is subsequently obtained by solving a convex optimisation problem and the missing measurements effects on the H∞ performance are evaluated. A numerical example is given to illustrate the feasibility and effectiveness of the proposed filter

    Triethylbutylammonium bis(trifluoromethanesulphonyl)imide ionic liquid as an effective electrolyte additive for Li-ion batteries

    No full text
    Ionic liquids are promising additives for Li-ion batteries owing to its desirable physicochemical properties. Triethylbutylammonium bis(trifluoromethanesulphonyl)imide ([N-2224][Tf2N]) ionic liquid was synthesized and their physical and electrochemical properties were investigated. Among several quaternary ammonium ionic liquids, [N-2224][Tf2N] exhibited higher conductivity (1.31 mS cm(-1)), better thermal and electrochemical stabilities, and wide electrochemical window, i.e., more than 5.9 V. Standard solution was prepared by dissolving lithium bis(trifluoromethanesulphonyl)imide (LiTf2N) in ethylene carbonates/dimethyl carbonate (1:1, by weight). The conductivity for the electrolyte containing [N-2224][Tf2N] and the mixed electrolyte without additives at 25 A degrees C are 10.24 and 8.79 mS cm(-1), respectively. LiFePO4 half-cell containing 0.6 mol L-1 LiTf2N-based organic electrolyte with [N-2224][Tf2N] showed relatively high initial discharge capacity and coulombic efficiency at first cycle. It is found that the mix [N-2224][Tf2N] electrolyte exhibits relatively high-rate capacity. The capacity retention of half-cell containing [N-2224][Tf2N] is 2 % more than without additive at 0.2 C. However, the rate capacity retention of the half-cell with mix [N-2224][Tf2N] electrolyte is above 10 % more than without additive at 0.5 C. The results showed that [N-2224][Tf2N] was an effective electrolyte additive in LiFePO4 half-cell
    corecore