14 research outputs found

    Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites

    Get PDF
    One-dimensional (1D) CdS@ZnS core-shell nanocomposites were successfully synthesized via a two-step solvothermal method. Preformed CdS nanowires with a diameter of ca. 45 nm and a length up to several tens of micrometers were coated with a layer of ZnS shell by the reaction of zinc acetate and thiourea at 180 °C for 10 h. It was found that uniform ZnS shell was composed of ZnS nanoparticles with a diameter of ca. 4 nm, which anchored on the nanowires without any surface pretreatment. The 1D CdS@ZnS core-shell nanocomposites were confirmed by XRD, SEM, TEM, HR-TEM, ED, and EDS techniques. The optical properties and photocatalytic activities of the 1D CdS@ZnS core-shell nanocomposites towards methylene blue (MB) and 4-chlorophenol (4CP) under visible light (λ > 420 nm) were separately investigated. The results show that the ZnS shell can effectively passivate the surface electronic states of the CdS cores, which accounts for the enhanced photocatalytic activities of the 1D CdS@ZnS core-shell nanocomposites compared to that of the uncoated CdS nanowires

    The Overseeing Mother: Revisiting the Frontal-Pose Lady in the Wu Family Shrines in Second Century China

    Get PDF
    Located in present-day Jiaxiang in Shandong province, the Wu family shrines built during the second century in the Eastern Han dynasty (25–220) were among the best-known works in Chinese art history. Although for centuries scholars have exhaustively studied the pictorial programs, the frontal-pose female image situated on the second floor of the central pavilion carved at the rear wall of the shrines has remained a question. Beginning with the woman’s eyes, this article demonstrates that the image is more than a generic portrait (“hard motif ”), but rather represents “feminine overseeing from above” (“soft motif ”). This synthetic motif combines three different earlier motifs – the frontal-pose hostess enjoying entertainment, the elevated spectator, and the Queen Mother of the West. By creatively fusing the three motifs into one unity, the Jiaxiang artists lent to the frontal-pose lady a unique power: she not only dominated the center of the composition, but also, like a divine being, commanded a unified view of the surroundings on the lofty building, hence echoing the political reality of the empress mother’s “overseeing the court” in the second century during Eastern Han dynasty

    Synthesis of Starch-Stabilized Ag Nanoparticles and Hg2+Recognition in Aqueous Media

    Get PDF
    The starch-stabilized Ag nanoparticles were successfully synthesized via a reduction approach and characterized with SPR UV/Vis spectroscopy, TEM, and HRTEM. By utilizing the redox reaction between Ag nanoparticles and Hg2+, and the resulted decrease in UV/Vis signal, we develop a colorimetric method for detection of Hg2+ion. A linear relationship stands between the absorbance intensity of the Ag nanoparticles and the concentration of Hg2+ion over the range from 10 ppb to 1 ppm at the absorption of 390 nm. The detection limit for Hg2+ions in homogeneous aqueous solutions is estimated to be ~5 ppb. This system shows excellent selectivity for Hg2+over other metal ions including Na+, K+, Ba2+, Mg2+, Ca2+, Fe3+, and Cd2+. The results shown herein have potential implications in the development of new colorimetric sensors for easy and selective detection and monitoring of mercuric ions in aqueous solutions

    Synthesis of Starch-Stabilized Ag Nanoparticles and Hg<sup>2+</sup>Recognition in Aqueous Media

    No full text
    Abstract The starch-stabilized Ag nanoparticles were successfully synthesized via a reduction approach and characterized with SPR UV/Vis spectroscopy, TEM, and HRTEM. By utilizing the redox reaction between Ag nanoparticles and Hg2+, and the resulted decrease in UV/Vis signal, we develop a colorimetric method for detection of Hg2+ion. A linear relationship stands between the absorbance intensity of the Ag nanoparticles and the concentration of Hg2+ion over the range from 10 ppb to 1 ppm at the absorption of 390 nm. The detection limit for Hg2+ions in homogeneous aqueous solutions is estimated to be ~5 ppb. This system shows excellent selectivity for Hg2+over other metal ions including Na+, K+, Ba2+, Mg2+, Ca2+, Fe3+, and Cd2+. The results shown herein have potential implications in the development of new colorimetric sensors for easy and selective detection and monitoring of mercuric ions in aqueous solutions.</p

    NRF2 activation ameliorates blood–brain barrier injury after cerebral ischemic stroke by regulating ferroptosis and inflammation

    No full text
    Abstract Arterial occlusion-induced ischemic stroke (IS) is a highly frequent stroke subtype. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that modulates antioxidant genes. Its role in IS is still unelucidated. The current study focused on constructing a transient middle cerebral artery occlusion (tMCAO) model for investigating the NRF2-related mechanism underlying cerebral ischemia/reperfusion (I/R) injury. Each male C57BL/6 mouse was injected with/with no specific NRF2 activator post-tMCAO. Changes in blood–brain barrier (BBB)-associated molecule levels were analyzed using western-blotting, PCR, immunohistochemistry, and immunofluorescence analysis. NRF2 levels within cerebral I/R model decreased at 24-h post-ischemia. NRF2 activation improved brain edema, infarct volume, and neurological deficits after MCAO/R. Similarly, sulforaphane (SFN) prevented the down-regulated tight junction proteins occludin and zonula occludens 1 (ZO-1) and reduced the up-regulated aquaporin 4 (AQP4) and matrix metalloproteinase 9 (MMP9) after tMCAO. Collectively, NRF2 exerted a critical effect on preserving BBB integrity modulating ferroptosis and inflammation. Because NRF2 is related to BBB injury regulation following cerebral I/R, this provides a potential therapeutic target and throws light on the underlying mechanism for clinically treating IS

    Hard nanocrystalline gold materials prepared via high-pressure phase transformation

    No full text
    As one of the important materials, nanocrystalline Au (n-Au) has gained numerous interests in recent decades owing to its unique properties and promising applications. However, most of the current n-Au thin films are supported on substrates, limiting the study on their mechanical properties and applications. Therefore, it is urgently desired to develop a new strategy to prepare nAu materials with superior mechanical strength and hardness. Here, a hard n-Au material with an average grain size of - 40 nm is prepared by cold-forging of the unique Au nanoribbons (NRBs) with unconventional 4H phase under high pressure. Systematic characterizations reveal the phase transformation from 4H to face-centered cubic (fcc) phase during the cold compression. Impressively, the compressive yield strength and Vickers hardness (H-v) of the prepared n-Au material reach similar to 140.2 MPa and similar to 1.0 GPa, which are 4.2 and 2.2 times of the microcrystalline Au foil, respectively. This work demonstrates that the combination of high-pressure cold-forging and the in-situ 4H-to-fcc phase transformation can effectively inhibit the grain growth in the obtained n-Au materials, leading to the formation of novel hard n-Au materials. Our strategy opens up a new avenue for the preparation of nanocrystalline metals with superior mechanical property
    corecore