27 research outputs found

    Non-motor symptoms in multiple system atrophy: A comparative study with Parkinson's disease and progressive supranuclear palsy

    Get PDF
    BackgroundNon-motor symptoms (NMS) are compulsory clinical features for the clinical diagnosis of multiple system atrophy (MSA), some of which precede motor symptoms onset. To date, few studies have systematically investigated NMS in MSA and the timing of presenting NMS as the disease progresses. Clinically, MSA is difficult to be differentiated from Parkinson's disease (PD) and progressive supranuclear palsy (PSP), and the differences in NMS between MSA and PD/PSP remain unclear. The aim of this study was to compare the burden of NMS between MSA and PD/PSP and to delineate the timing of NMS presentation relative to the onset of motor symptoms in MSA.MethodsA total of 61, 87, and 30 patients with MSA, PD, and PSP, respectively, were enrolled in this study. NMS was systematically assessed in all patients using the NMS scale (NMSS), and the onset of NMS relative to the onset of motor symptoms in MSA was investigated.ResultsMSA group had higher total NMSS scores (82.15 ± 46.10) than the PD (36.14 ± 30.78) and PSP (50.30 ± 55.05) groups (p < 0.001 overall). The number distribution pattern of the NMS was significantly different among the three parkinsonian disorders (p < 0.001 overall). In total, 85.2% of patients with MSA had more than 10 NMS, which was significantly higher than PD (28.7%) and PSP (33.3%). The frequency and scores of many NMSS subdomains and symptoms were higher in MSA than in PD and PSP (all p < 0.05). Multivariate logistic regression analysis revealed that patients with fainting, lack of motivation, swallowing, and loss of sexual interest could be attributed to MSA rather than PD or PSP, while patients with loss of concentration and forgetfulness were characteristic features of PD or PSP rather than MSA. REM-sleep behavior disorder (RBD), constipation, problems having sex, and loss of sexual interest preceded the motor symptoms onset of MSA by 2.81 ± 4.51, 1.54 ± 6.32, 1.35 ± 4.70, and 0.45 ± 3.61 years, respectively.ConclusionThe NMS spectrum in MSA differs from that of PD and PSP. Patients with MSA have a higher NMS burden than patients with PD or PSP. RBD, constipation, problems having sex, and loss of sexual interest may become early diagnostic clinical markers of MSA

    Methylone-induced hyperthermia and lethal toxicity: role of the dopamine and serotonin transporters

    No full text
    Methylone (2-methylamino-1-[3,4-methylenedioxy-phenyl]propan-1-one), an amphetamine analog, has emerged as a popular drug of abuse worldwide. Methylone induces hyperthermia, which is thought to contribute toward the lethal consequences of methylone overdose. Methylone has been assumed to induce hyperthermic effects through inhibition of serotonin and/or dopamine transporters (SERT and DAT, respectively). To examine the roles of each of these proteins in methylone-induced toxic effects, we used SERT and DAT knockout (KO) mice and assessed the hyperthermic and lethal effects caused by a single administration of methylone. Methylone produced higher rates of lethal toxicity compared with other amphetamine analogs in wild-type mice. Compared with wild-type mice, lethality was significantly lower in DAT KO mice, but not in SERT KO mice. By contrast, only a slight diminution in the hyperthermic effects of methylone was observed in DAT KO mice, whereas a slight enhancement of these effects was observed in SERT KO mice. Administration of the selective D1 receptor antagonist SCH 23390 and the D2 receptor antagonist raclopride reduced methylone-induced hyperthermia, but these drugs also had hypothermic effects in saline-treated mice, albeit to a smaller extent than the effects observed in methylone-treated mice. In contradistinction to 3,4-methylenedioxymethamphetamine, which induces its toxicity through SERT and DAT, these data indicate that DAT, but not SERT, is strongly associated with the lethal toxicity produced by methylone, which did not seem to be dependent on the hyperthermic effects of methylone. DAT is therefore a strong candidate molecule for interventions aimed at preventing acute neurotoxic and lethal effects of methylone

    Investigation on Abnormal Iron Metabolism and Related Inflammation in Parkinson Disease Patients with Probable RBD.

    No full text
    To investigate potential mechanisms involving abnormal iron metabolism and related inflammation in Parkinson disease (PD) patients with probable rapid eye movement sleep behavior disorder (PRBD).Total 210 PD patients and 31 controls were consecutively recruited. PD patients were evaluated by RBD Screening Questionnaire (RBDSQ) and classified into PRBD and probable no RBD (NPRBD) groups. Demographics information were recorded and clinical symptoms were evaluated by series of rating scales. Levels of iron and related proteins and inflammatory factors in cerebrospinal fluid (CSF) and serum were detected. Comparisons among control, NPRBD and PRBD groups and correlation analyses between RBDSQ score and levels of above factors were performed.(1) The frequency of PRBD in PD patients is 31.90%. (2) PRBD group has longer disease duration, more advanced disease stage, severer motor symptoms and more non-motor symptoms than NPRBD group. (3) In CSF, levels of iron, transferrin, NO and IL-1β in PRBD group are prominently increased. RBDSQ score is positively correlated with the levels of iron, transferrin, NO and IL-1β in PD group. Iron level is positively correlated with the levels of NO and IL-1β in PD group. (4) In serum, transferrin level is prominently decreased in PRBD group. PGE2 level in PRBD group is drastically enhanced. RBDSQ score exhibits a positive correlation with PGE2 level in PD group.PRBD is common in PD patients. PRBD group has severer motor symptoms and more non-motor symptoms. Excessive iron in brain resulted from abnormal iron metabolism in central and peripheral systems is correlated with PRBD through neuroinflammation

    Clinical features and dysfunctions of iron metabolism in Parkinson disease patients with hyper echogenicity in substantia nigra: a cross-sectional study

    No full text
    Abstract Background Transcranial ultrasound is a useful tool for providing the evidences for the early diagnosis and differential diagnosis of Parkinson disease (PD). However, the relationship between hyper echogenicity in substantia nigra (SN) and clinical symptoms of PD patients remains unknown, and the role of dysfunction of iron metabolism on the pathogenesis of SN hyper echogenicity is unclear. Methods PD patients was detected by transcranial sonography and divided into with no hyper echogenicity (PDSN-) group and with hyper echogenicity (PDSN+) group. Motor symptoms (MS) and non-motor symptoms (NMS) were evaluated, and the levels of iron and related proteins in serum and cerebrospinal fluid (CSF) were detected for PD patients. Data comparison between the two groups and correlation analyses were performed. Results PDSN+ group was significantly older, and had significantly older age of onset, more advanced Hohen-Yahr stage, higher SCOPA-AUT score and lower MoCA score than PDSN- group (P < 0.05). Compared with PDSN- group, the levels of transferrin and light-ferritin in serum and iron level in CSF were significantly elevated (P < 0.05), but ferroportin level in CSF was significantly decreased in PDSN+ group (P < 0.05). Conclusions PD patients with hyper echogenicity in SN are older, at more advanced disease stage, have severer motor symptoms, and non-motor symptoms of cognitive impairment and autonomic dysfunction. Hyper echogenicity of SN in PD patients is related to dysfunction of iron metabolism, involving increased iron transport from peripheral system to central nervous system, reduction of intracellular iron release and excessive iron deposition in brain

    The levels of inflammatory factors in serum among control, NPRBD and PRBD groups.

    No full text
    <p>P<sup>1</sup>: NPRBD group vs. Control group;</p><p>P<sup>2</sup>: PRBD group vs. Control group,</p><p>P<sup>3</sup>: PRBD group vs. NPRBD group.</p><p><sup><b>#</b></sup>: P<0.017.</p><p>The levels of inflammatory factors in serum among control, NPRBD and PRBD groups.</p
    corecore