37 research outputs found

    Regulation Mechanism of Processed Cheese Stretchability

    Get PDF
    In this work, the regulation mechanism of processed cheese stretchability was studied by adjusting the amount of added emulsifying salt (0.6%–3.0%) and potato acetate starch (0.125%–2%) and pH (5.4–5.8). The results showed that as the emulsifying salt increased from 0.6% to 3.0%, the content of bound calcium in processed cheese decreased from (4.42 ± 0.05) to (0.02 ± 0.04) g/kg, the average fat globule size D(4,3) decreased from (73.08 ± 3.16) to (27.90 ± 2.55) μm, and the bound water content increased from (9.57 ± 0.25)% to (10.40 ± 0.25)%, indicating that the calcium crosslinking effect gradually decreased, the emulsifying effect and hydration degree increased, the interaction between protein molecules changed from strong to weak, so the stretchability of processed cheese initially increased and then decreased. As pH increased from 5.4 to 5.8, the content of bound calcium increased from (2.01 ± 0.08) to (2.74 ± 0.05) g/kg, and the average fat globule size D(4,3) decreased from (36.36 ± 2.68) to (21.37 ± 2.39) μm. Fourier transform infrared spectroscopy showed that the bending vibration absorption peaks of O–H and N–H moved to lower wavenumbers, and the bound water content increased from (9.85 ± 0.16)% to (10.74 ± 0.12)%, indicating that the calcium crosslinking effect, emulsifying effect and hydration degree increased, the interaction between protein molecules changed from strong to weak, so the stretchability of processed cheese increased first and then decreased. As potato acetate starch concentration increased from 0.125% to 2%, the average fat globule size D(4,3) decreased from (54.17 ± 2.74) to (29.92 ± 2.71) μm, and the bound water content increased from (9.90 ± 0.38)% to (11.00 ± 0.21)%, indicating that the emulsifying effect and hydration degree increased, and the stretchability increased first and then decreased. At a potato acetate starch concentration of 2%, starch and protein were separated, so the stretchability became worse. In conclusion, the stretchability of processed cheese is comprehensively regulated by the degree of calcium ion chelation, emulsifying effect, electrostatic interaction between protein molecules, water distribution state and protein-polysaccharide phase behavior

    Integrated molecular pathway analysis informs a synergistic combination therapy targeting PTEN/PI3K and EGFR pathways for basal-like breast cancer

    Get PDF
    The basal-like breast cancer (BLBC) subtype is characterized by positive staining for basal mammary epithelial cytokeratin markers, lack of hormone receptor and HER2 expression, and poor prognosis with currently no approved molecularly-targeted therapies. The oncogenic signaling pathways driving basal-like tumorigenesis are not fully elucidated. Methods One hundred sixteen unselected breast tumors were subjected to integrated analysis of phosphoinositide 3-kinase (PI3K) pathway related molecular aberrations by immunohistochemistry, mutation analysis, and gene expression profiling. Incidence and relationships between molecular biomarkers were characterized. Findings for select biomarkers were validated in an independent series. Synergistic cell killing in vitro and in vivo tumor therapy was investigated in breast cancer cell lines and mouse xenograft models, respectively. Results Sixty-four % of cases had an oncogenic alteration to PIK3CA, PTEN, or INPP4B; when including upstream kinases HER2 and EGFR, 75 % of cases had one or more aberration including 97 % of estrogen receptor (ER)-negative tumors. PTEN-loss was significantly associated to stathmin and EGFR overexpression, positivity for the BLBC markers cytokeratin 5/14, and the BLBC molecular subtype by gene expression profiling, informing a potential therapeutic combination targeting these pathways in BLBC. Combination treatment of BLBC cell lines with the EGFR-inhibitor gefitinib plus the PI3K pathway inhibitor LY294002 was synergistic, and correspondingly, in an in vivo BLBC xenograft mouse model, gefitinib plus PI3K-inhibitor PWT-458 was more effective than either monotherapy and caused tumor regression. Conclusions Our study emphasizes the importance of PI3K/PTEN pathway activity in ER-negative and basal-like breast cancer and supports the future clinical evaluation of combining EGFR and PI3K pathway inhibitors for the treatment of BLBC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2609-2) contains supplementary material, which is available to authorized users.BioMed Central open acces

    Landscape metrics in assessing how the configuration of urban green spaces affects their cooling effect: A systematic review of empirical studies

    No full text
    Urban green spaces (UGS) are effective mitigations to excessive urban heat. Landscape metrics (LMs) have been widely used to assess how UGS configuration, i.e., edge and area, shape complexity, and aggregation, may facilitate better cooling. However, application of configurational LMs has produced diverging suggestions for planning and design practice, which cannot provide urban and landscape designers with holistic insights for future sustainable development. Thus, we conducted a systematic review to (1) summarize the contextual and methodological factors in pertinent studies, and (2) synthesize extractable results and implications, and see if the contextual and methodological factors may help to interpret the diversity in planning and design implications. A total of 167 studies were identified, covering 90 cities in 27 countries belonging to 16 Köppen climate zones. Evolving statistical methods have been applied, including spatial, non-spatial, and non-parametric machine-learning analyses. Synthesis of correlation coefficients reveals that patch-level metric SHAPE, and class-level metrics LPI, AI and COHESION yielded generally consistent trends across studies. No consensus was obtained based on patch-level metrics, while class-level analyses suggest aggregated, patchy, larger, and complex-shaped UGS facilitate better cooling. Contextual and methodological factors cannot help interpret the diverging suggestions. Few specific planning and design implications on UGS configuration were given. Future studies are suggested to specify either a land-use or land-cover perspective to align with practical scales in planning and design practice, and to formulate specific implications beyond binary suggestions by echoing the heterogeneity of thermal environment and UGS pattern under precise planning and design contexts with practical illustration

    GPR65 inhibits human trophoblast cell adhesion through upregulation of MYLK and downregulation of fibronectin via cAMP-ERK signaling in a low pH environment

    No full text
    Abstract Background Extravillous trophoblasts (EVTs) are essential cells during the formation of the placenta, with the major function of invading the maternal decidua, anchoring the developing placenta to the uterus, remodeling uterine arteries, and regulating immune responses to prevent rejection. During early pregnancy, the decidua undergoes a hypoxic and acidic microenvironment, which has been shown to participate in tumor cell migration, invasion, growth, and angiogenesis. Nevertheless, the mechanisms by which EVTs sense and respond to the acidic microenvironment, thereby executing their functions, remain poorly understood. Methods The effects of G protein-coupled receptor 65 (GPR65) on cell adhesion and other cellular functions were tested using JAR spheroids, mouse blastocysts, and HTR-8/SVneo cells. Specifically, we employed HTR-8/SVneo cells for gene overexpression and silencing to investigate the underlying mechanism of GPR65's impact on trophoblast cell function under acidic conditions. Additionally, villus tissue samples obtained from early pregnancy loss patients were utilized to explore the potential association between GPR65 and its related signaling pathway molecules with the disease. Results This study identified GPR65 expression widely in trophoblasts, with the highest level in EVTs. Importantly, optimal GPR65 levels are required for maintaining normal adhesion, migration, and invasion, whereas overexpression of GPR65 inhibits these functions by activating the cAMP-ERK signaling pathway, upregulating myosin light chain kinase (MYLK) and MYLK3 expression, and subsequently downregulating fibronectin. Consistently, elevated expression of GPR65, MYLK, and MYLK3 is observed in patients suffering from early pregnancy loss. Conclusions This work offers insights into the suppressive effects of GPR65 on EVT function under acidic conditions and highlights a putative target for therapeutic intervention in early pregnancy complications. Video Abstrac

    Effects of repetitive transcranial magnetic stimulation over the contralesional dorsal premotor cortex on upper limb function in severe ischaemic stroke: study protocol for a randomised controlled trial

    No full text
    Introduction Repetitive transcranial magnetic stimulation (rTMS) is an evidence-based treatment widely recommended to promote hand motor recovery after ischaemic stroke. However, the therapeutic efficacy of rTMS over the motor cortex in stroke patients is currently restricted and heterogeneous. This study aimed to determine whether excitatory rTMS over the contralesional dorsal premotor cortex (cPMd) facilitates the functional recovery of the upper limbs during the postacute stage of severe ischaemic stroke.Methods and analysis This study will be conducted as a single-blind, controlled, randomised study, in which 44 patients with poststroke hemiplegia with a course of disease ranging from 1 week to 3 months and Fugl-Meyer upper limb score ≤22 will be enrolled. The study participants will be randomly assigned to groups A (n=22) and B (n=22). The two groups are based on routine rehabilitation training and drug treatment; group A will be treated with low-frequency (1 Hz) rTMS over the contralesional primary motor cortex (cM1), and group B will be treated with high-frequency (10 Hz) rTMS over cPMd. For 2 weeks, rTMS will be administered once a day, 5 days a week. The primary outcome is the Fugl-Meyer assessment of the upper limb. The secondary outcomes include the Arm Subscore of the Motricity Index, Hong Kong edition of Functional Test for the Hemiplegic Upper Extremity, Modified Barthel Index and Modified Ashworth Scale score of the paralysed pectoralis major and biceps brachii. Furthermore, data of diffusion tensor imaging and functional MRI will be collected. These outcomes will be assessed before and after the completion of the intervention.Ethics and dissemination This study has been approved by the Ethics Committee of the First Affiliated Hospital of Nanjing Medical University (2020 SR-266). The findings of this study will be spread through networks of scientists, professionals and the general public as well as peer-reviewed scientific papers and presentations at pertinent conferences.Trial registration number ChiCTR200003804

    The isolation of the antagonistic strain Bacillus australimaris CQ07 and the exploration of the pathogenic inhibition mechanism of Magnaporthe oryzae.

    No full text
    Biological control as a promising method to combat plant disease has gained public attention in recent years. In the present study, we isolated 12 strains resistant to Magnaporthe oryzae from western Sichuan subalpine soil. Among them, CQ07 exhibited remarkable activity against M. oryzae. The result of 16S rRNA sequence analysis revealed that CQ07 is approximately 99% similar to Bacillus australimaris. The sterilized culture filtrate of CQ07 inhibited the growth of M. oryzae, which motivated us to deduce the influence of CQ07 on the pathogenicity of M. oryzae. As shown by experimentation, sterilized culture filtrate (10 μl/ml) of CQ07 can delay and even suppress the germination of conidia and prevent the formation of appressorium in vitro and in vivo. In addition, by simulative field tests, the spraying of conidia suspension diluted with sterilized culture filtrate of CQ07 reduced infection of rice blast. To better control rice blasts, understanding the infection mechanism of M. oryzae and inhibiting the mechanism of the antagonistic strain is of great importance

    Aerosol-nutrient-induced picoplankton growth in Lake Tahoe

    No full text
    Lake Tahoe is an oligotrophic lake appreciated for its transparent waters, yet the Lake's clarity has been declining for several decades due in part to eutrophication. At the same time, a shift from nitrogen (N) toward phosphorus (P) limitation of phytoplankton has occurred that could be due to atmospheric deposition of nutrients with high N:P ratios. Atmospheric particle samples collected during 2005–2006 had a mean soluble N:P ratio of 192:1, well above the Redfield ratio of 16:1 typically required by phytoplankton. Samples collected during the Angora Fire that occurred in 2007 were particularly enriched in N relative to P, with a mean ratio >2800:1. A bioassay incubation experiment was conducted using locally collected atmospheric total suspended particulate (TSP) matter. TSP samples with high ammonium (NH4 +) and low P content favored the growth of picoplankton (cells <3 µm) and opportunistic filamentous cyanobacteria, whereas larger nanophytoplankton (cells 3–20 µm) were better competitors when more P was available. Picoplankton growth can increase primary productivity without causing a large increase in chlorophyll (chl a) or biomass. Aerosol-nutrient-induced picoplankton growth (together with shifts in grazing dynamics and stratification trends) may contribute to the uncoupling between primary productivity, chl a, and biomass that has been observed in Lake Tahoe in the last several decades and, in particular, following the Wheeler and Angora Fires. The chemical composition of aerosols has a marked impact on ecosystem dynamics in Lake Tahoe with potential consequences to lake productivity and microbial community dynamics

    Isolation and evaluation of Bacillus amyloliquefaciens Rdx5 as a potential biocontrol agent against Magnaporthe oryzae

    No full text
    Rice blast is one of the most serious rice diseases. It is caused by Magnaporthe oryzae resulting in rice shortages. Biological control has become a new measure in the control of plant diseases. In this study, we isolated antagonistic bacteria from the traditional Chinese medicinal plant Baizhi (Angelica dahurica) against M. oryzae. Biochemical, physiological and 16S rDNA sequence analysis proved that it was Bacillus amyloliquefaciens and we named the strain Rdx5. The experiment proved that Rdx5 can produce cellulase, protease, indole-3-acetic acid and 1-amino-cyclopropane-1-carboxylate deaminase. The sterilized culture filtrate of Rdx5 had strong antifungal activity after treatment at 100 °C for 30 min. In addition, its antifungal activity did not change in strong acid, neutral and weak alkaline environment. However, under strong alkaline conditions, the antifungal activity decreased significantly. In vitro and in vivo experiments showed that Rdx5 could prevent and treat rice blast, since the prevention group performed better than the treatment group. B. amyloliquefaciens Rdx5 might provide an alternative resource for the biocontrol of rice blast
    corecore