5,414 research outputs found

    Neutralization and homophony avoidance in phonological learning

    Get PDF
    Previous research has suggested that homophony avoidance plays a role in constraining language change; in particular, phonological contrasts are less likely to be neutralized if doing so would greatly increase the amount of homophony in the language. Most of the research on homophony avoidance has focused on the history of real languages, comparing attested and unattested (hypothetical) phonological changes. In this study, we take a novel approach by focusing on the language learner. Using an artificial language learning paradigm, we show that learners are less likely to acquire neutralizing phonological rules compared to non-neutralizing rules, but only if the neutralizing rules create homophony between lexical items encountered during learning. The results indicate that learners are biased against phonological patterns that create homophony, which could have an influence on language change. The results also suggest that lexical learning and phonological learning are highly integrated

    Query-level Early Exit for Additive Learning-to-Rank Ensembles

    Get PDF
    Search engine ranking pipelines are commonly based on large ensembles of machine-learned decision trees. The tight constraints on query response time recently motivated researchers to investigate algorithms to make faster the traversal of the additive ensemble or to early terminate the evaluation of documents that are unlikely to be ranked among the top-k. In this paper, we investigate the novel problem of query-level early exiting, aimed at deciding the profitability of early stopping the traversal of the ranking ensemble for all the candidate documents to be scored for a query, by simply returning a ranking based on the additive scores computed by a limited portion of the ensemble. Besides the obvious advantage on query latency and throughput, we address the possible positive impact on ranking effectiveness. To this end, we study the actual contribution of incremental portions of the tree ensemble to the ranking of the top-k documents scored for a given query. Our main finding is that queries exhibit different behaviors as scores are accumulated during the traversal of the ensemble and that query-level early stopping can remarkably improve ranking quality. We present a reproducible and comprehensive experimental evaluation, conducted on two public datasets, showing that query-level early exiting achieves an overall gain of up to 7.5% in terms of NDCG@10 with a speedup of the scoring process of up to 2.2x

    Symbolic Partial-Order Execution for Testing Multi-Threaded Programs

    Full text link
    We describe a technique for systematic testing of multi-threaded programs. We combine Quasi-Optimal Partial-Order Reduction, a state-of-the-art technique that tackles path explosion due to interleaving non-determinism, with symbolic execution to handle data non-determinism. Our technique iteratively and exhaustively finds all executions of the program. It represents program executions using partial orders and finds the next execution using an underlying unfolding semantics. We avoid the exploration of redundant program traces using cutoff events. We implemented our technique as an extension of KLEE and evaluated it on a set of large multi-threaded C programs. Our experiments found several previously undiscovered bugs and undefined behaviors in memcached and GNU sort, showing that the new method is capable of finding bugs in industrial-size benchmarks.Comment: Extended version of a paper presented at CAV'2

    Validity and reliability of the Chinese critical thinking disposition inventory

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Big-Data-Driven Materials Science and its FAIR Data Infrastructure

    Get PDF
    This chapter addresses the forth paradigm of materials research -- big-data driven materials science. Its concepts and state-of-the-art are described, and its challenges and chances are discussed. For furthering the field, Open Data and an all-embracing sharing, an efficient data infrastructure, and the rich ecosystem of computer codes used in the community are of critical importance. For shaping this forth paradigm and contributing to the development or discovery of improved and novel materials, data must be what is now called FAIR -- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets the stage for advances of methods from artificial intelligence that operate on large data sets to find trends and patterns that cannot be obtained from individual calculations and not even directly from high-throughput studies. Recent progress is reviewed and demonstrated, and the chapter is concluded by a forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W. Andreoni), Springer 2018/201

    Identification of cyclins A1, E1 and vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis

    No full text
    Angiogenesis is an essential physiological process and an important factor in disease pathogenesis. However, its exploitation as a clinical target has achieved limited success and novel molecular targets are required. Although heme oxygenase-1 (HO-1) acts downstream of vascular endothelial growth factor (VEGF) to modulate angiogenesis, knowledge of the mechanisms involved remains limited. We set out identify novel HO-1 targets involved in angiogenesis. HO-1 depletion attenuated VEGF-induced human endothelial cell (EC) proliferation and tube formation. The latter response suggested a role for HO-1 in EC migration, and indeed HO-1 siRNA negatively affected directional migration of EC towards VEGF; a phenotype reversed by HO-1 over-expression. EC from Hmox1(-/-) mice behaved similarly. Microarray analysis of HO-1-depleted and control EC exposed to VEGF identified cyclins A1 and E1 as HO-1 targets. Migrating HO-1-deficient EC showed increased p27, reduced cyclin A1 and attenuated cyclin-dependent kinase 2 activity. In vivo, cyclin A1 siRNA inhibited VEGF-driven angiogenesis, a response reversed by Ad-HO-1. Proteomics identified structural protein vimentin as an additional VEGF-HO-1 target. HO-1 depletion inhibited VEGF-induced calpain activity and vimentin cleavage, while vimentin silencing attenuated HO-1-driven proliferation. Thus, vimentin and cyclins A1 and E1 represent VEGF-activated HO-1-dependent targets important for VEGF-driven angiogenesis

    Interplay of quantum and classical fluctuations near quantum critical points

    Full text link
    For a system near a quantum critical point (QCP), above its lower critical dimension dLd_L, there is in general a critical line of second order phase transitions that separates the broken symmetry phase at finite temperatures from the disordered phase. The phase transitions along this line are governed by thermal critical exponents that are different from those associated with the quantum critical point. We point out that, if the effective dimension of the QCP, deff=d+zd_{eff}=d+z (dd is the Euclidean dimension of the system and zz the dynamic quantum critical exponent) is above its upper critical dimension dCd_C, there is an intermingle of classical (thermal) and quantum critical fluctuations near the QCP. This is due to the breakdown of the generalized scaling relation ψ=νz\psi=\nu z between the shift exponent ψ\psi of the critical line and the crossover exponent νz\nu z, for d+z>dCd+z>d_C by a \textit{dangerous irrelevant interaction}. This phenomenon has clear experimental consequences, like the suppression of the amplitude of classical critical fluctuations near the line of finite temperature phase transitions as the critical temperature is reduced approaching the QCP.Comment: 10 pages, 6 figures, to be published in Brazilian Journal of Physic
    corecore