47,537 research outputs found

    A self-organising mixture network for density modelling

    Get PDF
    A completely unsupervised mixture distribution network, namely the self-organising mixture network, is proposed for learning arbitrary density functions. The algorithm minimises the Kullback-Leibler information by means of stochastic approximation methods. The density functions are modelled as mixtures of parametric distributions such as Gaussian and Cauchy. The first layer of the network is similar to the Kohonen's self-organising map (SOM), but with the parameters of the class conditional densities as the learning weights. The winning mechanism is based on maximum posterior probability, and the updating of weights can be limited to a small neighbourhood around the winner. The second layer accumulates the responses of these local nodes, weighted by the learning mixing parameters. The network possesses simple structure and computation, yet yields fast and robust convergence. Experimental results are also presente

    The correlations between the twin kHz QPO frequencies of LMXBs

    Full text link
    We analyzed the recently published kHz QPO data in the neutron star low-mass X-ray binaries (LMXBs), in order to investigate the different correlations of the twin peak kilohertz quasi-eriodic oscillations (kHz QPOs) in bright Z sources and in the less luminous Atoll sources. We find that a power-law relation \no\sim\nt^{b} between the upper and the lower kHz QPOs with different indices: bb\simeq1.5 for the Atoll source 4U 1728-34 and bb\simeq1.9 for the Z source Sco X-1. The implications of our results for the theoretical models for kHz QPOs are discussed.Comment: 6 pages, accepted by MNRA

    Universal local pair correlations of Lieb-Liniger bosons at quantum criticality

    Full text link
    The one-dimensional Lieb-Liniger Bose gas is a prototypical many-body system featuring universal Tomonaga-Luttinger liquid (TLL) physics and free fermion quantum criticality. We analytically calculate finite temperature local pair correlations for the strong coupling Bose gas at quantum criticality using the polylog function in the framework of the Yang-Yang thermodynamic equations. We show that the local pair correlation has the universal value g(2)(0)2p/(nε)g^{(2)}(0)\approx 2 p/(n\varepsilon) in the quantum critical regime, the TLL phase and the quasi-classical region, where pp is the pressure per unit length rescaled by the interaction energy ε=22mc2\varepsilon=\frac{\hbar^2}{2m} c^2 with interaction strength cc and linear density nn. This suggests the possibility to test finite temperature local pair correlations for the TLL in the relativistic dispersion regime and to probe quantum criticality with the local correlations beyond the TLL phase. Furthermore, thermodynamic properties at high temperatures are obtained by both high temperature and virial expansion of the Yang-Yang thermodynamic equation.Comment: 8 pages, 6 figures, additional text and reference

    Control of crystal polymorph in microfluidics using molluscan 28 kDa Ca2+-binding protein

    Get PDF
    Biominerals produced by biological systems in physiologically relevant environments possess extraordinary properties that are often difficult to replicate under laboratory conditions. Understanding the mechanism that underlies the process of biomineralisation can lead to novel strategies in the development of advanced materials. Using microfluidics, we have demonstrated for the first time, that an extrapallial (EP) 28 kDa protein, located in the extrapallial compartment between mantle and shell of Mytilus edulis, can influence, at both micro- and nanoscopic levels, the morphology, structure and polymorph that is laid down in the shell ultrastructure. Crucially, this influence is predominantly dependent on the existence of an EP protein concentration gradient and its consecutive interaction with Ca2+ ions. Novel lemon-shaped hollow vaterite structures with a clearly defined nanogranular assembly occur only where particular EP protein and Ca2+ gradients co-exist. Computational fluid dynamics enabled the progress of the reaction to be mapped and the influence of concentration gradients across the device to be calculated. Importantly, these findings could not have been observed using conventional bulk mixing methods. Our findings not only provide direct experimental evidence of the potential influence of EP proteins in crystal formation, but also offer a new biomimetic strategy to develop functional biomaterials for applications such as encapsulation and drug delivery

    Wilson ratio of Fermi gases in one dimension

    Get PDF
    We calculate the Wilson ratio of the one-dimensional Fermi gas with spin imbalance. The Wilson ratio of attractively interacting fermions is solely determined by the density stiffness and sound velocity of pairs and of excess fermions for the two-component Tomonaga-Luttinger liquid (TLL) phase. The ratio exhibits anomalous enhancement at the two critical points due to the sudden change in the density of states. Despite a breakdown of the quasiparticle description in one dimension, two important features of the Fermi liquid are retained, namely the specific heat is linearly proportional to temperature whereas the susceptibility is independent of temperature. In contrast to the phenomenological TLL parameter, the Wilson ratio provides a powerful parameter for testing universal quantum liquids of interacting fermions in one, two and three dimensions.Comment: 5+2 pages, 4+1 figures, Eq. (4) is proved, figures were refine

    Observation of giant positive magnetoresistance in a Cooper pair insulator.

    Get PDF
    Ultrathin amorphous Bi films, patterned with a nanohoneycomb array of holes, can exhibit an insulating phase with transport dominated by the incoherent motion of Cooper pairs (CP) of electrons between localized states. Here, we show that the magnetoresistance (MR) of this Cooper pair insulator (CPI) phase is positive and grows exponentially with decreasing temperature T, for T well below the pair formation temperature. It peaks at a field estimated to be sufficient to break the pairs and then decreases monotonically into a regime in which the film resistance assumes the T dependence appropriate for weakly localized single electron transport. We discuss how these results support proposals that the large MR peaks in other unpatterned, ultrathin film systems disclose a CPI phase and provide new insight into the CP localization

    Carbon coating of the SPS dipole chambers

    Full text link
    The Electron Multipacting (EM) phenomenon is a limiting factor for the achievement of high luminosity in accelerators for positively charged particles and for the performance of RF devices. At CERN, the Super Proton Synchrotron (SPS) must be upgraded in order to feed the Large Hadron Collider (LHC) with 25 ns bunch spaced beams. At such small bunch spacing, EM may limit the performance of the SPS and consequently that of the LHC. To mitigate this phenomenon CERN is developing a carbon thin film coating with low Secondary Electron Yield (SEY) to coat the internal walls of the SPS dipoles beam pipes. This paper presents the progresses in the coating technology, the performance of the carbon coatings and the strategy for a large scale production.Comment: 7 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba, Italy; CERN Yellow Report CERN-2013-002, pp.141-14

    The Interpretations For the Low and High Frequency QPO Correlations of X-ray Sources Among White Dwarfs, Neutron Stars and Black Holes

    Full text link
    It is found that there exists an empirical linear relation between the high frequency \nhigh and low frequency \nlow of quasi-periodic oscillations (QPOs) for black hole candidate (BHC), neutron star (NS) and white dwarf (WD) in the binary systems, which spans five orders of magnitude in frequency. For the NS Z (Atoll) sources, νhigh\nu_{high} and νlow\nu_{low} are identified as the lower kHz QPO frequency and horizontal branch oscillations (HBOs) \nh (broad noise components); for the black hole candidates and low-luminosity neutron stars, they are the QPOs and broad noise components at frequencies between 1 and 10 Hz; for WDs, they are the ``dwarf nova oscillations'' (DNOs) and QPOs of cataclysmic variables (CVs). To interpret this relation, our model ascribes νhigh\nu_{high} to the Alfv\'en wave oscillation frequency at a preferred radius and νlow\nu_{low} to the same mechanism at another radius. Then, we can obtain \nlow = 0.08 \nhigh and the relation between the upper kHz QPO frequency \nt and HBO to be \nh \simeq 56 ({\rm Hz}) (\nt/{\rm kHz})^{2}, which are in accordance with the observed empirical relations. Furthermore, some implications of model are discussed, including why QPO frequencies of white dwarfs and neutron stars span five orders of magnitude in frequency. \\Comment: 11 pages, 1 figure, accepted by PAS
    corecore