37,790 research outputs found

    On Internal Fracture of Solids

    Get PDF
    Initiation and propagation of internal fracture in solid

    Video Compressive Sensing for Dynamic MRI

    Full text link
    We present a video compressive sensing framework, termed kt-CSLDS, to accelerate the image acquisition process of dynamic magnetic resonance imaging (MRI). We are inspired by a state-of-the-art model for video compressive sensing that utilizes a linear dynamical system (LDS) to model the motion manifold. Given compressive measurements, the state sequence of an LDS can be first estimated using system identification techniques. We then reconstruct the observation matrix using a joint structured sparsity assumption. In particular, we minimize an objective function with a mixture of wavelet sparsity and joint sparsity within the observation matrix. We derive an efficient convex optimization algorithm through alternating direction method of multipliers (ADMM), and provide a theoretical guarantee for global convergence. We demonstrate the performance of our approach for video compressive sensing, in terms of reconstruction accuracy. We also investigate the impact of various sampling strategies. We apply this framework to accelerate the acquisition process of dynamic MRI and show it achieves the best reconstruction accuracy with the least computational time compared with existing algorithms in the literature.Comment: 30 pages, 9 figure

    Incentivizing High Quality Crowdwork

    Full text link
    We study the causal effects of financial incentives on the quality of crowdwork. We focus on performance-based payments (PBPs), bonus payments awarded to workers for producing high quality work. We design and run randomized behavioral experiments on the popular crowdsourcing platform Amazon Mechanical Turk with the goal of understanding when, where, and why PBPs help, identifying properties of the payment, payment structure, and the task itself that make them most effective. We provide examples of tasks for which PBPs do improve quality. For such tasks, the effectiveness of PBPs is not too sensitive to the threshold for quality required to receive the bonus, while the magnitude of the bonus must be large enough to make the reward salient. We also present examples of tasks for which PBPs do not improve quality. Our results suggest that for PBPs to improve quality, the task must be effort-responsive: the task must allow workers to produce higher quality work by exerting more effort. We also give a simple method to determine if a task is effort-responsive a priori. Furthermore, our experiments suggest that all payments on Mechanical Turk are, to some degree, implicitly performance-based in that workers believe their work may be rejected if their performance is sufficiently poor. Finally, we propose a new model of worker behavior that extends the standard principal-agent model from economics to include a worker's subjective beliefs about his likelihood of being paid, and show that the predictions of this model are in line with our experimental findings. This model may be useful as a foundation for theoretical studies of incentives in crowdsourcing markets.Comment: This is a preprint of an Article accepted for publication in WWW \c{opyright} 2015 International World Wide Web Conference Committe

    The Interpretations For the Low and High Frequency QPO Correlations of X-ray Sources Among White Dwarfs, Neutron Stars and Black Holes

    Full text link
    It is found that there exists an empirical linear relation between the high frequency \nhigh and low frequency \nlow of quasi-periodic oscillations (QPOs) for black hole candidate (BHC), neutron star (NS) and white dwarf (WD) in the binary systems, which spans five orders of magnitude in frequency. For the NS Z (Atoll) sources, νhigh\nu_{high} and νlow\nu_{low} are identified as the lower kHz QPO frequency and horizontal branch oscillations (HBOs) \nh (broad noise components); for the black hole candidates and low-luminosity neutron stars, they are the QPOs and broad noise components at frequencies between 1 and 10 Hz; for WDs, they are the ``dwarf nova oscillations'' (DNOs) and QPOs of cataclysmic variables (CVs). To interpret this relation, our model ascribes νhigh\nu_{high} to the Alfv\'en wave oscillation frequency at a preferred radius and νlow\nu_{low} to the same mechanism at another radius. Then, we can obtain \nlow = 0.08 \nhigh and the relation between the upper kHz QPO frequency \nt and HBO to be \nh \simeq 56 ({\rm Hz}) (\nt/{\rm kHz})^{2}, which are in accordance with the observed empirical relations. Furthermore, some implications of model are discussed, including why QPO frequencies of white dwarfs and neutron stars span five orders of magnitude in frequency. \\Comment: 11 pages, 1 figure, accepted by PAS

    Wilson ratio of Fermi gases in one dimension

    Get PDF
    We calculate the Wilson ratio of the one-dimensional Fermi gas with spin imbalance. The Wilson ratio of attractively interacting fermions is solely determined by the density stiffness and sound velocity of pairs and of excess fermions for the two-component Tomonaga-Luttinger liquid (TLL) phase. The ratio exhibits anomalous enhancement at the two critical points due to the sudden change in the density of states. Despite a breakdown of the quasiparticle description in one dimension, two important features of the Fermi liquid are retained, namely the specific heat is linearly proportional to temperature whereas the susceptibility is independent of temperature. In contrast to the phenomenological TLL parameter, the Wilson ratio provides a powerful parameter for testing universal quantum liquids of interacting fermions in one, two and three dimensions.Comment: 5+2 pages, 4+1 figures, Eq. (4) is proved, figures were refine

    Universal local pair correlations of Lieb-Liniger bosons at quantum criticality

    Full text link
    The one-dimensional Lieb-Liniger Bose gas is a prototypical many-body system featuring universal Tomonaga-Luttinger liquid (TLL) physics and free fermion quantum criticality. We analytically calculate finite temperature local pair correlations for the strong coupling Bose gas at quantum criticality using the polylog function in the framework of the Yang-Yang thermodynamic equations. We show that the local pair correlation has the universal value g(2)(0)2p/(nε)g^{(2)}(0)\approx 2 p/(n\varepsilon) in the quantum critical regime, the TLL phase and the quasi-classical region, where pp is the pressure per unit length rescaled by the interaction energy ε=22mc2\varepsilon=\frac{\hbar^2}{2m} c^2 with interaction strength cc and linear density nn. This suggests the possibility to test finite temperature local pair correlations for the TLL in the relativistic dispersion regime and to probe quantum criticality with the local correlations beyond the TLL phase. Furthermore, thermodynamic properties at high temperatures are obtained by both high temperature and virial expansion of the Yang-Yang thermodynamic equation.Comment: 8 pages, 6 figures, additional text and reference
    corecore