9 research outputs found

    Phonon promoted charge density wave in topological kagome metal ScV6_{6}Sn6_{6}

    Full text link
    Charge density wave (CDW) orders in vanadium-based kagome metals have recently received tremendous attention due to their unique properties and intricate interplay with exotic correlated phenomena, topological and symmetry-breaking states. However, the origin of the CDW order remains a topic of debate. The discovery of ScV6_{6}Sn6_{6}, a vanadium-based bilayer kagome metal exhibiting an in-plane 3\sqrt{3} x 3\sqrt{3} R\textit{R}30deg{\deg} CDW order with time-reversal symmetry breaking, provides a novel platform to explore the underlying mechanism behind the unconventional CDW. Here, we combine high-resolution angle-resolved photoemission spectroscopy, Raman scattering measurements and density functional theory to investigate the electronic structures and phonon modes of ScV6_{6}Sn6_{6} and their evolution with temperature. We identify topologically nontrivial Dirac surface states and multiple van Hove singularities (VHSs) in the vicinity of the Fermi level, with one VHS near the K point exhibiting nesting wave vectors in proximity to the 3\sqrt{3} x 3\sqrt{3} R\textit{R}30deg{\deg} CDW wave vector. Additionally, Raman measurements indicate a strong intrinsic electron-phonon coupling in ScV6_{6}Sn6_{6}, as evidenced by the presence of a two-phonon mode and a large frequency amplitude mode. Our findings highlight the fundamental role of lattice degrees of freedom in promoting the CDW in ScV6_{6}Sn6_{6} and provide important insights into the fascinating correlation phenomena observed in kagome metals

    Laser Polishing Die Steel Assisted by Steady Magnetic Field

    No full text
    To improve the surface roughness of SKD61 die steel and reduce the secondary overflow of the molten pool, a steady magnetic field-assisted laser polishing method is proposed to study the effect of steady magnetic field on the surface morphology and melt pool flow behavior of SKD61 die steel. Firstly, a low-energy pulsed laser is used for the removal of impurities from the material surface; then, the CW laser, assisted by steady magnetic field, is used to polish the rough surface of SKD61 die steel to reduce the material surface roughness. The results show that the steady magnetic field-assisted laser polishing can reduce the surface roughness of SKD61 die steel from 6.1 μm to 0.607 μm, which is a 90.05% reduction compared with the initial surface roughness. Furthermore, a multi-physical-field numerical transient model involving heat transfer, laminar flow and electromagnetic field is established to simulate the flow state of the molten pool on the surface of the SKD61 die steel. This revealed that the steady magnetic field is able to inhibit the secondary overflow of the molten pool to improve the surface roughness of SKD61 slightly by reducing the velocity of the molten pool. Compared with the molten pool depth obtained experimentally, the molten pool depth simulation was 65 μm, representing an error 15.0%, thus effectively demonstrating the accuracy of the simulation model

    Architectures and Applications of BODIPY-Based Conjugated Polymers

    No full text
    Conjugated polymers generally contain conjugated backbone structures with benzene, heterocycle, double bond, or triple bond, so that they have properties similar to semiconductors and even conductors. Their energy band gap is very small and can be adjusted via chemical doping, allowing for excellent photoelectric properties. To obtain prominent conjugated materials, numerous well-designed polymer backbones have been reported, such as polyphenylenevinylene, polyphenylene acetylene, polycarbazole, and polyfluorene. 4,4′-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based conjugated polymers have also been prepared owing to its conjugated structure and intriguing optical properties, including high absorption coefficients, excellent thermal/photochemical stability, and high quantum yield. Most importantly, the properties of BODIPYs can be easily tuned by chemical modification on the dipyrromethene core, which endows the conjugated polymers with multiple functionalities. In this paper, BODIPY-based conjugated polymers are reviewed, focusing on their structures and applications. The forms of BODIPY-based conjugated polymers include linear, coiled, and porous structures, and their structure–property relationship is explored. Also, typical applications in optoelectronic materials, sensors, gas/energy storage, biotherapy, and bioimaging are presented and discussed in detail. Finally, the review provides an insight into the challenges in the development of BODIPY-based conjugated polymers

    Calculation of Ultimate Bearing Capacity of Pile Foundations of Highway Bridges under the Coupling of Steep Slope and Karst

    No full text
    In order to study the influence of steep slope-karst coupling on the vertical bearing characteristics of pile foundation, the orthogonal simulation tests of pile foundation under 4 different roof thickness and 5 different slope are carried out by using Marc finite element software, and the correction coefficient of vertical partial bearing capacity of pile foundation according to roof thickness and slope is put forward. The test results show that when the thickness of the roof is more than 3 times the pile diameter, the ultimate bearing capacity of the pile foundation tends to be stable, and the value is about 19% when the slope is 45°; the ultimate bearing capacity of the pile foundation decreases gradually with the increase of the slope, and the reduction reaches 29.83% when the slope is greater than 45°. According to the calculation results, the variation law of vertical partial bearing capacity of pile foundation is analyzed, and the calculation formula of standard value of vertical ultimate bearing capacity of pile foundation in steep slope karst area considering both roof thickness and slope is put forward, and the correction coefficients αi and β are put forward

    Microtrace Analysis of Rare Earth Element Residues in Femtogram Quantities by Laser Desorption and Laser Postionization Mass Spectrometry

    No full text
    A newly developed laser desorption and laser postionization time-of-flight mass spectrometer (LD-LPI-TOFMS) for the direct microtrace determination of rare earth elements (REEs) in residues has been presented. Benefiting from spatially and temporally separated processes between desorption and ionization, LD-LPI-TOFMS plays a dual role in alleviating the barriers of deteriorating spectral resolution at high irradiance, serious matrix effects and elemental fractionation effects at low irradiance. Compared with the conventional laser desorption/ionization (LDI) method, this technique offers unambiguous full-elemental determination of 15 REEs with more uniform relative sensitivity coefficients (RSCs) ranging from 0.5 to 2.5 for all REEs investigated, satisfying the semiquantitative analysis criteria. More importantly, a highly sensitive analysis of REEs with very little consumption was achieved by getting the utmost out of desorbed neutral atoms instead of increasing the amount of the sample, resulting in outstanding relative and absolute limits of detection (LODs and ALODs) of ∼ng/mL and ∼femtogram. The results presented here indicate that LD-LPI-TOFMS offers great potential in microtrace determination for elements in solution samples with minor sample preparation

    Phonon promoted charge density wave in topological kagome metal ScV<sub>6</sub>Sn<sub>6</sub>

    No full text
    Charge density wave (CDW) orders in vanadium-based kagome metals have recently received tremendous attention, yet their origin remains a topic of debate. The discovery of ScV 6 Sn 6 , a bilayer kagome metal featuring an intriguing 3×3×3\sqrt{3}\times\sqrt{3}\times3 3 × 3 × 3 CDW order, offers a novel platform to explore the underlying mechanism behind the unconventional CDW. Here, we combine high-resolution angle-resolved photoemission spectroscopy, Raman scattering and density functional theory to investigate the electronic structure and phonon modes of ScV 6 Sn 6 . We identify topologically nontrivial surface states and multiple van Hove singularities (VHSs) in the vicinity of the Fermi level, with one VHS aligning with the in-plane component of the CDW vector near the Kˉ\bar{K} K ¯ point. Additionally, Raman measurements indicate a strong electron-phonon coupling, as evidenced by a two-phonon mode and new emergent modes. Our findings highlight the fundamental role of lattice degrees of freedom in promoting the CDW in ScV 6 Sn 6
    corecore