277 research outputs found

    Two-dimensional Massless Dirac Fermions in Antiferromagnetic AFe2As2 (A = Ba, Sr)

    Get PDF
    We report infrared studies of AFe2_{2}As2_{2} (A = Ba, Sr), two representative parent compounds of iron-arsenide superconductors, at magnetic fields (B) up to 17.5 T. Optical transitions between Landau levels (LLs) were observed in the antiferromagnetic states of these two parent compounds. Our observation of a B\sqrt{B} dependence of the LL transition energies, the zero-energy intercepts at B = 0 T under the linear extrapolations of the transition energies and the energy ratio (∼\sim 2.4) between the observed LL transitions, combined with the linear band dispersions in two-dimensional (2D) momentum space obtained by theoretical calculations, demonstrates the existence of massless Dirac fermions in antiferromagnetic BaFe2_{2}As2_{2}. More importantly, the observed dominance of the zeroth-LL-related absorption features and the calculated bands with extremely weak dispersions along the momentum direction kzk_{z} indicate that massless Dirac fermions in BaFe2_{2}As2_{2} are 2D. Furthermore, we find that the total substitution of the barium atoms in BaFe2_{2}As2_{2} by strontium atoms not only maintains 2D massless Dirac fermions in this system, but also enhances their Fermi velocity, which supports that the Dirac points in iron-arsenide parent compounds are topologically protected.Comment: Magneto-infrared study, Landau level spectroscopy, DFT+DMFT calculation

    Coordinated cell type-specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood

    Get PDF
    Development of prefrontal and other higher-order association cortices is associated with widespread changes in the cortical transcriptome, particularly during the transitions from prenatal to postnatal development, and from early infancy to later stages of childhood and early adulthood. However, the timing and longitudinal trajectories of neuronal gene expression programs during these periods remain unclear in part because of confounding effects of concomitantly occurring shifts in neuron-to-glia ratios. Here, we used cell type-specific chromatin sorting techniques for genome-wide profiling of a histone mark associated with transcriptional regulation--H3 with trimethylated lysine 4 (H3K4me3)--in neuronal chromatin from 31 subjects from the late gestational period to 80 years of age. H3K4me3 landscapes of prefrontal neurons were developmentally regulated at 1,157 loci, including 768 loci that were proximal to transcription start sites. Multiple algorithms consistently revealed that the overwhelming majority and perhaps all of developmentally regulated H3K4me3 peaks were on a unidirectional trajectory defined by either rapid gain or loss of histone methylation during the late prenatal period and the first year after birth, followed by similar changes but with progressively slower kinetics during early and later childhood and only minimal changes later in life. Developmentally downregulated H3K4me3 peaks in prefrontal neurons were enriched for Paired box (Pax) and multiple Signal Transducer and Activator of Transcription (STAT) motifs, which are known to promote glial differentiation. In contrast, H3K4me3 peaks subject to a progressive increase in maturing prefrontal neurons were enriched for activating protein-1 (AP-1) recognition elements that are commonly associated with activity-dependent regulation of neuronal gene expression. We uncovered a developmental program governing the remodeling of neuronal histone methylation landscapes in the prefrontal cortex from the late prenatal period to early adolescence, which is linked to cis-regulatory sequences around transcription start sites

    Collapse of critical nematic fluctuations in FeSe under pressure

    Full text link
    We report the evolution of the electronic nematic susceptibility in FeSe via Raman scattering as a function of hydrostatic pressure up to 5.8 GPa where the superconducting transition temperature TcT_{c} reaches its maximum. The critical nematic fluctuations observed at low pressure vanish above 1.6 GPa, indicating they play a marginal role in the four-fold enhancement of TcT_{c} at higher pressures. The collapse of nematic fluctuations appears to be linked to a suppression of low energy electronic excitations which manifests itself by optical phonon anomalies at around 2 GPa, in agreement with lattice dynamical and electronic structure calculations using local density approximation combined with dynamical mean field theory. Our results reveal two different regimes of nematicity in the phase diagram of FeSe under pressure: a d-wave Pomeranchuk instability of the Fermi surface at low pressure and a magnetic driven orthorhombic distortion at higher pressure.Comment: 7 pages, 4 figures. Supplementary Material available upon reques

    Cloze Test Helps: Effective Video Anomaly Detection via Learning to Complete Video Events

    Full text link
    As a vital topic in media content interpretation, video anomaly detection (VAD) has made fruitful progress via deep neural network (DNN). However, existing methods usually follow a reconstruction or frame prediction routine. They suffer from two gaps: (1) They cannot localize video activities in a both precise and comprehensive manner. (2) They lack sufficient abilities to utilize high-level semantics and temporal context information. Inspired by frequently-used cloze test in language study, we propose a brand-new VAD solution named Video Event Completion (VEC) to bridge gaps above: First, we propose a novel pipeline to achieve both precise and comprehensive enclosure of video activities. Appearance and motion are exploited as mutually complimentary cues to localize regions of interest (RoIs). A normalized spatio-temporal cube (STC) is built from each RoI as a video event, which lays the foundation of VEC and serves as a basic processing unit. Second, we encourage DNN to capture high-level semantics by solving a visual cloze test. To build such a visual cloze test, a certain patch of STC is erased to yield an incomplete event (IE). The DNN learns to restore the original video event from the IE by inferring the missing patch. Third, to incorporate richer motion dynamics, another DNN is trained to infer erased patches' optical flow. Finally, two ensemble strategies using different types of IE and modalities are proposed to boost VAD performance, so as to fully exploit the temporal context and modality information for VAD. VEC can consistently outperform state-of-the-art methods by a notable margin (typically 1.5%-5% AUROC) on commonly-used VAD benchmarks. Our codes and results can be verified at github.com/yuguangnudt/VEC_VAD.Comment: To be published as an oral paper in Proceedings of the 28th ACM International Conference on Multimedia (ACM MM '20). 9 pages, 7 figure

    Spin excitations in optimally P-doped BaFe2(As0.7P0.3)2superconductor

    Full text link
    We use inelastic neutron scattering to study temperature and energy dependence of spin excitations in optimally P-doped BaFe2(As0.7P0.3)2 superconductor (Tc = 30 K) throughout the Brillouin zone. In the undoped state, spin waves and paramagnetic spin excitations of BaFe2As2 stem from antiferromagnetic (AF) ordering wave vector QAF= (1/-1,0) and peaks near zone boundary at (1/-1,1/-1) around 180 meV. Replacing 30% As by smaller P to induce superconductivity, low-energy spin excitations of BaFe2(As0.7P0.3)2form a resonance in the superconducting state and high-energy spin excitations now peaks around 220 meV near (1/-1,1/-1). These results are consistent with calculations from a combined density functional theory and dynamical mean field theory, and suggest that the decreased average pnictogen height in BaFe2(As0.7P0.3)2 reduces the strength of electron correlations and increases the effective bandwidth of magnetic excitations.Comment: 7 pages, 5 figures, with supplementar

    Antireflection self-reference method based on ultrathin metallic nanofilms for improving terahertz reflection spectroscopy

    Get PDF
    We present the potential of an antireflection self-reference method based on ultrathin tantalum nitride (TaN) nanofilms for improving terahertz (THz) reflection spectroscopy. The antireflection self-reference method is proposed to eliminate mutual interference caused by unwanted reflections, which significantly interferes with the important reflection from the actual sample in THz reflection measurement. The antireflection self-reference model was investigated using a wave-impedance matching approach, and the theoretical model was verified in experimental studies. We experimentally demonstrated this antireflection selfreference method can completely eliminate the effect of mutual interference, accurately recover the actual sample’s reflection and improve THz reflection spectroscopy. Our method paves the way to implement a straightforward, accurate and efficient approach to investigate THz properties of the liquids and biological samplesThe Fund from Hefei University of Technology (407-0371000019); Sichuan Province Science and Technology Support Program (No. 2016GZ0250); the Fundamental Research Funds for the Central Universities (Grant No. JD2017JGPY0006); National Natural Science Foundation of China (Grant No.51607050); MINECO (MAT2015–74381-JIN to B.P., RYC2014–16962 and CTQ2017-89588-R to P.dP.); Xunta de Galicia (Centro singular de investigación de Galicia accreditation 2016–2019, ED431G/09); European Union (European Regional Development Fund – ERDF)S

    A Large Portal Vein: A Rare Finding of Recent Portal Vein Thrombosis

    Get PDF
    Acute portal vein thrombosis (PVT) is rarely encountered by clinicians. The most common manifestation of acute PVT is sudden onset of abdominal pain. A computed tomography scan without contrast often shows a high-density material in the portal vein. After injection of contrast agents, absence of luminal enhancement and enlargement of the obstructed portal vein are shown. In this case report, we demonstrated a rare computed tomography finding in which the diameter of the main portal vein was enormously distended to 3-fold that of the aorta in a patient with recent PVT. Despite thrombolysis and anticoagulation were immediately given, portal venous recanalization was not achieved in the patient. After 5 years, variceal bleeding and ascites occurred and liver function had persistently deteriorated. Finally, he died of progressive liver failure. Considering this case, we suggest that an early decision for invasive interventional treatment might be necessary to both increase the rate of portal venous recanalization and improve prognosis, as anticoagulation and thrombolysis therapy failed to recanalize recent PVT

    Correlation driven near-flat band Stoner excitations in a Kagome magnet

    Full text link
    Among condensed matter systems, Mott insulators exhibit diverse properties that emerge from electronic correlations. In itinerant metals, correlations are usually weak, but can also be enhanced via geometrical confinement of electrons, that manifest as `flat' dispersionless electronic bands. In the fast developing field of topological materials, which includes Dirac and Weyl semimetals, flat bands are one of the important components that can result in unusual magnetic and transport behaviour. To date, characterisation of flat bands and their magnetism is scarce, hindering the design of novel materials. Here, we investigate the ferromagnetic Kagom\'{e} semimetal Co3_3Sn2_2S2_2 using resonant inelastic X-ray scattering. Remarkably, nearly non-dispersive Stoner spin excitation peaks are observed, sharply contrasting with the featureless Stoner continuum expected in conventional ferromagnetic metals. Our band structure and dynamic spin susceptibility calculations, and thermal evolution of the excitations, confirm the nearly non-dispersive Stoner excitations as unique signatures of correlations and spin-polarized electronic flat bands in Co3_3Sn2_2S2_2. These observations serve as a cornerstone for further exploration of band-induced symmetry-breaking orders in topological materials.Comment: 15 pages, 4 figures, and Supplementary Informatio
    • …
    corecore