63 research outputs found

    Relational learning for set value functions

    Get PDF
    Relational learning is learning in a context where we have a set of items with relationships. For example, in a recommender system or advertising platform, items are grouped into lists to attract user attention, and some items may be more popular than others. We are often interested in learning individual abilities, approximating group performances and making best set selection. However, it could be challenging as we have limited feedback and various uncertainties. We might only observe noisy aggregate feedback at the set level (set level randomness), and each item could be a random variable following some distributions (item level randomness). To tackle the problem, we model the group performance using a set value function, defined as a function of item values within the group of interest. We first study the beta model for hypergraphs. The model treats relational data as hypergraphs where nodes represent items and hyper-edges group items into sets. The goal is to estimate individual beta values from the group outcomes. We study the inference problem under different settings using maximum likelihood estimation (MLE). We move on to consider more general set value functions and the second source of randomness at the item level. The goal is to find good item representations (sketches) for approximation of stochastic valuation functions, defined as the expectation of set value functions of independent random variables. We present an approximation everywhere guarantee for a wide range of stochastic valuation functions. Finally, we study an online variant where an agent can draw samples sequentially. At each time step, the agent chooses a group of items subject to constraints and receives some form of feedbacks. The goal is to select a set of items with maximum performances according to some stochastic valuation functions. We consider the regret minimization setting and address the problem under value-index feedback

    Robust Parameter Design of Functional Responses Based on Bayesian SUR Models

    Get PDF
    As for the robust parameter design of functional responses, a Bayesian Seemingly Unrelated Regression (SUR) model is proposed to take into account the model uncertainty and response variability in this paper. First of all, the SUR model is used to build the functional relationship between the output responses and the input factors at different time points. Also, Bayesian analysis of the SUR model is performed to consider the influence of the model parameter uncertainty on the research results. Secondly, the process means and variances of the functional responses at different time points are estimated by the posterior samples of the simulated responses. Moreover, an integrated performance index (i.e. mean square error) is establish by using the above process means and variances. Then, the optimal parameter settings may be found by minimizing the MSE performance index. Finally, the advantages of the proposed method are illustrated by an example from the literature

    Gate-induced insulator to band-like transport transition in organolead halide perovskite

    Full text link
    Understanding the intrinsic charge transport in organolead halide perovskites is essential for the development of high-efficiency photovoltaics and other optoelectronic devices. Despite the rapid advancement of the organolead halide perovskite in photovoltaic and optoelectronic applications, the intrinsic charge carrier transport in these materials remains elusive partly due to the difficulty of fabricating electrical devices and obtaining good electrical contact. Here, we report the fabrication of organolead halide perovskite microplates with monolayer graphene as low barrier electrical contact. A systematic charge transport studies reveal an insulator to band-like transport transition. Our studies indicate that the insulator to band-like transport transition depends on the orthorhombic-to-tetragonal phase transition temperature and defect densities of the organolead halide perovskite microplates. Our findings are not only important for the fundamental understanding of charge transport behavior but also offer valuable practical implications for photovoltaics and optoelectronic applications based on the organolead halide perovskite.Comment: 18 pages, 5 figure

    A Framing Link Based Tabu Search Algorithm for Large-Scale Multidepot Vehicle Routing Problems

    Get PDF
    A framing link (FL) based tabu search algorithm is proposed in this paper for a large-scale multidepot vehicle routing problem (LSMDVRP). Framing links are generated during continuous great optimization of current solutions and then taken as skeletons so as to improve optimal seeking ability, speed up the process of optimization, and obtain better results. Based on the comparison between pre- and postmutation routes in the current solution, different parts are extracted. In the current optimization period, links involved in the optimal solution are regarded as candidates to the FL base. Multiple optimization periods exist in the whole algorithm, and there are several potential FLs in each period. If the update condition is satisfied, the FL base is updated, new FLs are added into the current route, and the next period starts. Through adjusting the borderline of multidepot sharing area with dynamic parameters, the authors define candidate selection principles for three kinds of customer connections, respectively. Link split and the roulette approach are employed to choose FLs. 18 LSMDVRP instances in three groups are studied and new optimal solution values for nine of them are obtained, with higher computation speed and reliability

    Signal identification with Kalman Filter towards background-free neutrinoless double beta decay searches in gaseous detectors

    Full text link
    Particle tracks and differential energy loss measured in high pressure gaseous detectors can be exploited for event identification in neutrinoless double beta decay~(0νββ0\nu \beta \beta) searches. We develop a new method based on Kalman Filter in a Bayesian formalism (KFB) to reconstruct meandering tracks of MeV-scale electrons. With simulation data, we compare the signal and background discrimination power of the KFB method assuming different detector granularities and energy resolutions. Typical background from 232^{232}Th and 238^{238}U decay chains can be suppressed by another order of magnitude than that in published literatures, approaching the background-free regime. For the proposed PandaX-III experiment, the 0νββ0\nu \beta \beta search half-life sensitivity at the 90\% confidence level would reach 2.7×10262.7 \times 10^{26}~yr with 5-year live time, a factor of 2.7 improvement over the initial design target

    Global evaluation of key factors influencing nitrogen fertilization efficiency in wheat: a recent meta-analysis (2000-2022)

    Get PDF
    Improving nitrogen use efficiency (NUE) without compromising yield remains a crucial agroecological challenge in theory and practice. Some meta-analyses conducted in recent years investigated the impact of nitrogen (N) fertilizer on crop yield and gaseous emissions, but most are region-specific and focused on N sources and application methods. However, various factors affecting yield and N fertilizer efficiency in wheat crops on a global scale are not extensively studied, thus highlighting the need for a comprehensive meta-analysis. Using 109 peer-reviewed research studies (published between 2000 and 2022) from 156 experimental sites (covering 36.8, 38.6 and 24.6% of coarse, medium, and fine texture soils, respectively), we conducted a global meta-analysis to elucidate suitable N management practices and the key factors influencing N fertilization efficiency in wheat as a function of yield and recovery efficiency and also explained future perspectives for efficient N management in wheat crop. Overall, N fertilization had a significant impact on wheat yield. A curvilinear relationship was found between N rates and grain yield, whereas maximum yield improvement was illustrated at 150-300 kg N ha-1. In addition, N increased yield by 92.18% under direct soil incorporation, 87.55% under combined chemical and organic fertilizers application, and 72.86% under split application. Site-specific covariates (climatic conditions and soil properties) had a pronounced impact on N fertilization efficiency. A significantly higher yield response was observed in regions with MAP > 800 mm, and where MAT remained < 15 °C. Additionally, the highest yield response was observed with initial AN, AP and AK concentrations at < 20, < 10 and 100-150 mg kg-1, respectively, and yield response considerably declined with increasing these threshold values. Nevertheless, regression analysis revealed a declining trend in N recovery efficiency (REN) and the addition of N in already fertile soils may affect plant uptake and RE. Global REN in wheat remained at 49.78% and followed a negative trend with the further increase of N supply and improvement in soil properties. Finally, an advanced N management approach such as “root zone targeted fertilization” is suggested to reduce fertilizer application rate and save time and labor costs while achieving high yield and NUE

    Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates

    Get PDF
    The methylammonium lead iodide (MAPbI3) perovskite has attracted considerable interest for its high-efficiency, low-cost solar cells, but is currently plagued by its poor environmental and thermal stability. To aid the development of robust devices, we investigate here the microscopic degradation pathways of MAPbI3 microplates. Using in situ transmission electron microscopy to follow the thermal degradation process, we find that under moderate heating at 85°C the crystalline structure shows a gradual evolution from tetragonal MAPbI3 to trigonal lead iodide layered crystals with a fixed crystallographic direction. Our solid-state nudged elastic band calculations confirm that the surface-initiated layer-by-layer degradation path exhibits the lowest energy barrier for crystal transition. We further show experimentally and theoretically that encapsulation of the perovskites with boron nitride flakes suppresses the surface degradation, greatly improving its thermal stability. These studies provide mechanistic insight into the thermal stability of perovskites that suggests new designs for improved stability
    • …
    corecore