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Abstract: As for the robust parameter design of functional responses, a Bayesian Seemingly Unrelated Regression (SUR) 

model is proposed to take into account the model uncertainty and response variability in this paper. First of all, the SUR model 

is used to build the functional relationship between the output responses and the input factors at different time points. Also, 

Bayesian analysis of the SUR model is performed to consider the influence of the model parameter uncertainty on the research 

results. Secondly, the process means and variances of the functional responses at different time points are estimated by the 

posterior samples of the simulated responses. Moreover, an integrated performance index (i.e. mean square error) is establish 

by using the above process means and variances. Then, the optimal parameter settings may be found by minimizing the MSE 

performance index. Finally, the advantages of the proposed method are illustrated by an example from the literature. 
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1. INTRODUCTION 

With the rapid development of digital manufacturing and the increasing complexity of production processes, 

the quality characteristics of products or processes usually take on a specific functional relationship in the 

manufacturing process of some complex products. Such kind of functional relationships may be more adequate to 

describe the quality characteristics of a product or process
[1]

. This output response is the curve of observed 

variable called functional responses
[2]

, that is to say, the output response is a curve function of the observed 

variable in one experiment, which can be either controllable or uncontrollable, and the shape or profile of the 

curve observed at different observed variables determines the quality characteristics of the output response
[3]

. As 

for traditional multi-response robust parameter design, the robust parameter design goal of the functional 

responses is to find the optimal value of the controllable factor, so that the output response is robust and the system 

is not sensitive to changes in the noise factor. Fogliatto
[4]

 converts the functional response to a normal response 

based on the Hausdorff distance (HD), the result of which is given by a single value. HD measures the distance 

between points in the two contours, allowing us to use the distance of the targeted contour as an optimization 

criterion. In contrast to Euclidean distance calculations, the use of HD does not require input data vectors to have 

the same dimensions. Furthermore, there is no need to model functional results with HD. Govaerts
[5] 

analyzed 

possible methods for designing experimental results when the response was functional and compared it to case 

studies in the metal injection molding industry, proposing three different approaches to fit the model to functional 

data: two-step nonlinear modeling; pointwise functional regression; and smoothed functional regression. All 

derived models are capable of predicting functional responses from any design factor level selected in the 

experimental domain. Castillo
[6] 

proposed a Bayesian modeling method for functional response systems to 

optimize the shape or profile of functional responses. In the case of a hypothetical robust parameter design scheme 

where there are controllable factors and noise factors that vary randomly according to a specific distribution, this 

method introduced the model parameter uncertainty into the optimization phase and extended Peterson's early 
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methods to functional responses based on hierarchical two-order mixed-effects models. Wu
[7] 

has some 

similarities with the work proposed by Castillo, both of which optimize the contour shape with controllable factors 

and noise factors. The main difference between the two is that the model proposed by Wu, all design parameters 

are controllable, and the additional variance qualitative model in the second level is considered. Each design point 

of multiple contours is used for model estimation, so Wu’s model estimation is more complicate. 

However, the robust parameter design of functional response often ignores the correlation between 

functional responses, resulting in an increase estimation error of model parameter. Shah and Montgomery
[8]

 first 

introduced the SUR method into the response surface problem of multi-response experiments. The core of the 

SUR method is to use the structure of the variance-covariance matrix between the equations to improve the 

accuracy of the least squares estimation of a single equation
[9]

. Using the SUR method can produce more accurate 

model parameter estimates than the least squares method, and reduce the model fitting error caused by the 

correlation between the response variables, but the SUR method has higher requirements on the sample size of the 

experiment
[10]

. Zhang
[11]

 solved the problem of the strong correlation between responses by combining principal 

component analysis with SUR method and reduces model fitting error. Zhang
[12]

 combined the SUR method into 

the multivariate quality loss function. The model fitting of the least squares method proved that the SUR method 

can be used to obtain more accurate parameter estimation of multi-response surface equations when the 

correlation between the responses is significant. And the expected quality loss at the best solution obtained is 

smaller. In view of the model parameter uncertainty, Long
[13]

 analyzed the nonparametric seemingly unrelated 

regression model by the Bayesian method in the study of consumption expenditure and income structure. The 

results show that the proposed method is effective. Peremans
[14]

 considered robust inferences for seemingly 

unrelated regression models, and developed fast and robust bootstrap procedures to obtain robust inferences for 

these estimators, established confidence intervals for model parameters, and regressions in seemingly unrelated 

regression models. Hypothesis testing of linear coefficient constraints proposes a robust process to test for the 

existence of correlations between multiple variables. Peterson et al.
[15]

 used a multivariate posterior probability 

distribution of an unrelated regression model to determine the optimal factor level by evaluating the reliability of 

the desired multivariate response. The SUR model can be modified by considering the noise distribution and the 

residual t-distribution model. Further research in this field to make the variance-covariance matrix of controllable 

factors may also be helpful to the experimenter. 

The distribution of the output quality characteristics of many functional responses is changing over a given 

time interval in industrial production. Therefore, the specifications, target value, as well as the process mean, and 

variance is also changing with time. For example, environmental engineers may be interested on the influence that 

different filtering devices have on the concentration of water impurities as time progresses. As for the robust 

parameter design of functional responses, a Bayesian Seemingly Unrelated Regression (SUR) model is proposed 

to take into account the model uncertainty and response variability in this paper. First of all, the SUR model is used 

to build the functional relationship between the output responses and the input factors at different time points. 

Also, Bayesian analysis of the SUR model is performed to consider the influence of the model parameter 

uncertainty on the research results. Secondly, the process means and variances of the functional responses at 

different time points are estimated by the posterior samples of the simulated responses. Moreover, an integrated 

performance index (i.e. weighted mean square error) is establish by using the above process means and variances. 

Then, the optimal parameter settings may be found by minimizing the WMSE performance index. Finally, the 

advantages of the proposed method are illustrated by an example from the literature. 

 

2. Bayesian analysis of SUR models 

In the robust parameter design of functional responses, if there are q quality characteristics, the SUR 

regression model of functional responses can be expressed as: 
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where
iy is the column vector of the observation value of the 1n dimensional output response,

iX is 

the
in p factor matrix, and 

iβ is the 1ip  dimensional estimated error column vector, 
iε is the 1n dimensional 

random error column vector. As shown in equation (1), the equations have different independent variables and 

variances. Also, the model permits error terms in different equations to be correlated. 

In the matrix form, the SUR model in equation (1) is expressed as: 

                , ~ (0 )N  
n

y Xβ ε ε I，                           (2) 

where 0 is the zero matrix, is the tensor product, Σ is the q q matrix with the diagonal elements 2 2

1 ,..., q  , 

and the off-diagonal ij th elements are
ij .The maximum likelihood estimates of β and Σ are obtained from the 

maximum likelihood function: 

                     
 1/2 /2

1 1
( | , , ) exp tr

2(2 ) | |nq n
f R



 
      

y X β

                
(3) 

where “tr” denotes the trace of a matrix, |Σ| = det(Σ) is the value of the determinant of Σ, the ij
th

 elements of the 

q q matrixmatrix ( )ijR r , T( ) ( )ij i i i i i ir   y X β y X β . If Σ is known, a parameter estimate can be obtained as 

the generalized least squares (GLS) estimator β̂ . In practice, however, Σ in β̂ is usually unknown. In this paper, 

the iterative SUR approach is used to obtain the maximum likelihood estimates of β and Σ. 

In the absence of prior knowledge, Bayesian analysis with noninformative priors is widespread in practice. This 

paper used Jeffreys' invariant prior
[16]

: 

                           

1

2
1 1 1( , ) ( ) ( ) | |

q

  




    β β                          (4)                

which is proportional to the square root of the determinant of the Fisher information matrix. The joint posterior 

density function for the parameters is then: 

                        
 

( 1)/2 1

1

1
( , | , ) exp tr

2

n q
R

    
     

 
β y X

                  
(5) 

It is evident from the form of the joint posterior density function
1( , | , ) β y X that the conditional 

posteriors
1( | , , ) β y X and

1( | , , )  y X β are 

                               
1

ˆ ˆ( | , , ) ( , )N   β y X β                          (6)                    

                               1( | , , ) ( , )IW R n  y X β                          (7) 

Where,  
1

1 1ˆ ( ) ( )n n


      β X I X X I y ,  

1
1ˆ ( )n


   X I X , ( , )IW   denotes the inverse Wishart 

distribution. Although the posteriors of β and Σ are depending upon each other, we can use the Gibbs sampler. 

Starting from an initial value (0)
β and (0) , update the coefficient vector ( )j

β by drawing a new value from the 

conditional posterior density function ( 1)

1( | , , )j β y X in equation (6), and update ( )j by drawing a new value 

from the condition posterior density function ( )

1( | , , )j  y X β in equation (7). The convergence diagnostics of 

model parameter is carried out after discarding the Burn-times of Nsim repeated samples. Then, the process 

means and variances of the functional responses at different time points are estimated by the posterior samples of 
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the simulated responses. Moreover, an integrated performance index (i.e. mean square error) is establish by using 

the above process means and variances. Finally, the optimal parameter settings may be found by minimizing the 

MSE performance index. The implemented steps of the proposed method are summarized as followed: 

Step 1: The functional relationship between the output responses and the input factors at different time points is 

established using Bayesian SUR model. 

Step 2: Convergence diagnostics for model parameters has performed by using some visual tools (trace plots, 

autocorrelation plots and posterior density plots). 

Step 3: The process means and variances of the functional responses at different time points are estimated by 

using these stable posterior samples of the simulated responses. 

Step 4: An integrated performance index (i.e. mean square error MSE) is establish by using the above process 

means and variances estimated in Step 3. 

Step 5: The optimal parameter settings are minimized using the MSE performance index. 

 

3. CASE ANALYSIS 

In the pharmaceutical manufacturing industry, researchers often need to observe the time-oriented dynamic 

quality characteristics of experimental drugs to determine whether the rate of absorption or dissolution of 

experimental drugs meet the intent of the patient. Usually, the researchers pre-defined acceptable levels of 

absorption, especially for controlled-release experimental drugs. If the drug dosage is released too quickly, it may 

be harmful to the patient, whereas if the dissolution time is considerably less than the target time of release, the 

therapeutic effect of the drug may not be achieved. The case data in this paper is from a specific solubility study 

conducted by Nagarwal et al.
[17]

 on in situ gel forming formulation. The in situ gel forming formulation presents a 

novel idea of delivering the drug to the patient in the form of a liquid dosage, but still achieving the duration 

required for the controlled release drug to achieve efficacy. It is important to control the release rate of the drug in 

the blood. By changing the concentration of sodium alginate, gellan gum, and metformin, the release rate of the 

drug can be controlled within a pre-defined specification. In the experiment conducted by Nagarwal et al., the 

levels of experimental factors are shown in Table 1. The uncoded factor for sodium alginate ( 1x ) was set to 1.25%, 

1.75%, and 2.25%, the uncoded factor for gellan gum ( 2x ) was set to 0%, 0.25%, and 0.50%, and the uncoded 

factor for metformin ( 3x )was set to 2.5%, 3.75. % and 5.0%. Changing the concentration of sodium alginate , 

gellan gum, and metformin, and observed the drug release ratios at three different time points (30 min,  

Table 1. Test factor levels 

Factors 
Levels 

-1 0 1 

sodium alginate（%） 1.25 1.75 2.25 

gellan gum（%） 0 0.25 0.50 

metformin（%） 2.5 3.75 5.0 

210 min, and 480 min)were respectively 1 2,y y and 3y . The expected target values of 1 2,y y and 3y are 

respectively 23.5%, 63.5%, and 92.5%. The experimenter selected a full-factor experiment design to conduct 

a related experiment. The specific experiment data are shown in Table 2. 

 

Table 2. Drugs controlled-release experiment data 

Run 
Coded units 1t (30min) 

2t (210min) 3t (480min) 

1x  2x  3x  1y  1s  2y  2s  3y  3s  

1 -1 -1 -1 35.79 0.73 73.78 1.19 98.29 1.46 

2 0 -1 -1 27.43 0.96 65.75 0.73 96.57 0.33 

3 1 -1 -1 22.80 3.61 70.11 1.24 92.61 0.79 

4 -1 0 -1 32.55 2.90 67.24 0.69 94.46 1.24 
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Run 
Coded units 1t (30min) 

2t (210min) 
3t (480min) 

1x  
2x  

3x  
1y  

1s  
2y  

2s  
3y  

3s  

5 0 0 -1 26.06 1.45 62.17 0.48 89.81 1.22 

6 1 0 -1 23.50 1.19 56.65 0.49 82.09 1.71 

7 -1 1 -1 24.70 1.93 71.76 0.95 91.89 1.46 

8 0 1 -1 22.14 1.20 67.11 1.19 86.28 1.92 

9 1 1 -1 20.94 0.95 51.47 1.93 80.80 0.05 

10 -1 -1 0 48.58 0.55 83.26 0.74 98.57 0.76 

11 0 -1 0 40.43 0.92 73.87 0.76 97.70 0.40 

12 1 -1 0 37.15 0.73 66.75 1.48 94.93 0.40 

13 -1 0 0 32.86 0.56 68.47 0.57 95.58 0.53 

14 0 0 0 29.97 0.93 64.74 0.91 92.68 0.74 

15 1 0 0 28.00 1.10 58.00 0.38 86.34 0.95 

16 -1 1 0 29.06 1.11 69.10 1.46 94.12 0.74 

17 0 1 0 25.25 0.92 64.05 1.88 93.70 1.16 

18 1 1 0 24.32 0.74 54.12 0.92 84.36 0.57 

19 -1 -1 1 41.27 1.04 84.64 0.72 99.52 0.73 

20 0 -1 1 37.09 0.98 77.12 1.87 94.75 0.95 

21 1 -1 1 25.31 0.64 70.61 0.98 91.64 0.87 

22 -1 0 1 37.45 3.39 75.00 2.04 97.23 1.58 

23 0 0 1 30.82 0.80 70.22 0.61 93.09 0.85 

24 1 0 1 22.82 0.99 59.64 0.21 87.54 1.43 

25 -1 1 1 35.93 0.70 73.33 0.99 98.12 1.07 

26 0 1 1 32.08 0.99 70.91 1.21 94.93 0.65 

27 1 1 1 31.52 0.59 60.37 0.80 88.57 0.42 

 

Combined with MCMC (Markov chain Monte Carlo) method, the experiment generated various coefficients 

by iterating 7000 times, of which the first 1000 iterations (Burn-in terms) are discarded because the initial iteration 

has dependencies. In view of the limited space, this paper only gives the trace plot, autocorrelation plot and 

posterior distribution plot of the partial coefficients for the response
1y . 

 
Figure 1. Convergence diagnostics for model parameters 
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It can be seen from the trace plot in Figure 1 that the generated posterior samples obey the stationary 

distribution. Also, it can be seen from the autocorrelation plot that the autocorrelation plot of the model parameter 

is very small, which meets the requirements of convergence diagnosis. The posterior distribution plot of the model 

parameters showed that the posterior distribution of the coefficients approximates to the normal distribution, 

which verifies the rationality of the coefficients which follow the normal distribution and ensures the accuracy of 

the subsequent experimental results. 

According to the experimental data in Table 2, the posterior mean of the corresponding regression 

coefficients can be calculated by the proposed method of this paper. The model is given as follows: 

2 2 2

1 1 2 3 1 2 3 1 2

1 3 2 3

(x) 31.1730 4.5632 3.8780 3.2565 0.6497 1.8254 3.3683 2.3021

0.7549 1.1756

y x x x x x x x x

x x x x

        


 

2 2 2 2

1 1 2 3 1 2 3 1 2

1 3 2 3

(x) 0.9275 1.1317 0.0573 0.2674 0.2822 0.4082 0.5459 0.3467

0.2595 0.0722

x x x x x x x x

x x x x

         



2 2 2

2 1 2 3 1 2 3 1 2

1 3 2 3

(x) 64.5085 6.6081 4.6334 3.1032 0.9949 4.6181 1.2846 1.1808

0.6385 0.6907

y x x x x x x x x

x x x x

        



2 2 2 2

2 1 2 3 1 2 3 1 2

1 3 2 3

(x) 0.7609 0.0541 0.0920 0.0320 0.0846 0.4593 0.0069 0.0672

0.2132 0.1217

x x x x x x x x

x x x x

         



2 2 2

3 1 2 3 1 2 3 1 2

1 3 2 3

(x) 92.4757 4.3847 2.8745 1.8084 1.2514 2.2067 0.9862 1.0948

0.1681 2.0212

y x x x x x x x x

x x x x

        



2 2 2 2

3 1 2 3 1 2 3 1 2

1 3 2 3

(x) 0.1302 0.0757 0.0898 0.0149 0.3204 0.3444 0.100.89 83

0.07

70

67 0.1042

x x x x x x x x

x x x x

         


 

Based on the established model, MSE (mean square error) is selected as the optimization index. The 

optimization model is given as follows: 

2 2

1

min MSE[ (1), (2),..., ( )] [( (x)-T(q)) (x)]
w

q

y y y w y 


 
 

Table 3. Experimental results and comparison 

Approach 1 2 3( , , )x x x  MSE[y(1)+y(2)+y(3)] 

Nagarwal’s methodology （0,1,0） 91.8266 

Goethals’s methodology[18] （-0.1354,0.7544,-0.4700） 14.6293 

Proposed methodology （1,-0.8862,-1） 8.8753 

According to the above optimization model, the genetic algorithm is used to optimize the parameters, and the 

experimental results and comparison are shown in Table 3. 

It can be seen from Table 3 that the total mean square error obtained by the proposed method is 8.8753 and 

the optimal parameter settings are 1 2 31, 0.8862, 1x x x      respectively when the functional response has 

different target values at different time points. Compared with the method proposed by Nagarwal, the total mean 

square error is reduced by 90.33%; Compared with the Goethals’s method, and the total mean square error is 

reduced by 39.33%. The method proposed in this paper and Goethals and Nagarwal are all optimized for the 

process mean of a given target value at the time point. Compared with the other two methods, the proposed 

method has been dramatically improved based on the performance index MSE. In addition, the proposed method 

combines the simultaneous optimization of process mean and variance, thereby reducing the total mean square 
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error observed in the approximate objective function. 

 

4. CONCLUSIONS 

The correlation among multiple responses and the model parameter uncertainty are often neglected in the 

study of the robust parameter design of functional responses. The proposed method in this paper not only takes 

into account the dynamic characteristics of functional responses over time but also considered the model 

parameter uncertainty and the correlation between functional responses as well as the robustness of multivariate 

processes. As for the robust parameter design of functional response based on the response surface method, the 

accuracy of model estimation is crucial for the reliability of optimization results. It is worth noting that the 

proposed approach provides a natural way of combining prior information (e.g., experience of experimenters) 

with experimental data in the laser micro-drilling process. When new experimental data become available, the 

previous posterior distribution can be used as a prior. Future research can be conducted to continually update the 

posterior distribution of the SUR models with the experimental data obtained by means of sequential experimental 

design. By doing so, the proposed approach can build a more reasonable and flexible process model to reflect the 

high variability and uncertainty of the advanced manufacturing process. In addition, the proposed approach only 

focuses on the optimal setting of the controllable factors in this paper. However, it also significantly reduces the 

variation which is transmitted by the noise. Therefore, as to our belief, the current research work can be further 

extended to achieve online robust parameter design that accounts for uncertainty of noise factors and allows the 

user to update the model estimates with online observations. 
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