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ABSTRACT

Imposing structure on odor representations during learning in the prefrontal cortex

Yiliu Wang

Animals have evolved sensory systems that afford innate and adaptive responses to stim-

uli in the environment. Innate behaviors are likely to be mediated by hardwired circuits

that respond to invariant predictive cues over long periods of evolutionary time. However,

most stimuli do not have innate value. Over the lifetime of an animal, learning provides

a mechanism for animals to update the predictive value of cues through experience. Sen-

sory systems must therefore generate neuronal representations that are able to acquire value

through learning. A fundamental challenge in neuroscience is to understand how and where

value is imposed in brain during learning.

The olfactory system is an attractive sensory modality to study learning because the

anatomical organization is concise in that there are relatively few synapses separating the

sense organ from brain areas implicated in learning. Thus, the circuits for learned olfac-

tory behaviors appear to be relatively shallow and therefore more experimentally accessible

than other sensory systems. The goal of this thesis is to characterize the representation and

function of neural circuits involved in olfactory associative learning. Odor perception is ini-

tiated by the binding of odors onto olfactory receptors expressed in the sensory epithelium.

Each olfactory receptor neuron (ORN) expresses one of 1500 different receptor genes, the

expression of which pushes the ORN to project with spatial specificity onto a defined loci

within the olfactory bulb, the olfactory glomeruli. Therefore, each and every odor evokes

a stereotyped map of glomerular activity in the bulb.



The projection neurons of the olfactory bulb, mitral and tufted (M/T) cells, send axons

to higher brain areas, including a significant input to the primary olfactory cortex, the piri-

form cortex. Axons from M/T cells project diffusely to the piriform without apparent spa-

tial preference; as a consequence, the spatial order of the bulb is discarded in the piriform.

In agreement with anatomical data, electrophysiological and optical imaging studies also

demonstrate that individual odorants activate sparse subsets of neurons across the piriform

without any spatial order. Moreover, individual piriform neurons exhibit discontinuous re-

ceptive fields that defy chemical or perceptual categorization. These observations suggests

that piriform neurons receive random subsets of glomerular input. Therefore, odor repre-

sentations in piriform are unlikely to be hardwired to drive specific behaviors. Rather, this

model suggests that value must be imposed upon the piriform through learning. Indeed, the

piriform has been shown to be both sufficient and necessary for aversive olfactory learning

without affecting innate odor responses. However, how value is imposed on odor represen-

tations in the piriform and downstream associational areas remain largely unknown.

We first developed a strategy to track neural activity in a population of neurons across

multiple days in deep brain areas using 2-photon endoscopic imaging. This allowed us to

assay changes in neural responses to odors during learning in piriform and in downstream

associative areas. Using this technique, we first observe that piriform odor responses are

unaffected by learning, so learning must therefore impose discernable changes in neural

activity downstream of piriform. Piriform projects to multiple downstream areas that are

implicated in appetitive associative learning, such as the orbitofrontal cortex (OFC). Imag-

ing of neural activity in the OFC reveal that OFC neurons acquire strong responses to con-

ditioned odors (CS+) during learning. Moreover, multiple and distinct CS+ odors activate



the same population of OFC neurons, and these responses are gated by context and internal

state. Together, our imaging data shows that an external and sensory representation in the

piriform is transformed into an internal and cognitive representation of value in the OFC.

Moreover, we found that optogenetic silencing of the OFC impaired the ability of mice to

acquire learned associations. Therefore, the robust representation of expected value of the

odor cues is necessary for the formation of appetitive associations.

We made an important observation: once the task has been learned with a set of odors,

the OFC representation decays after learning has plateaued and remains silent even when

mice encounter novel odors they haven’t previously experienced. Moreover, silencing the

OFC when it was not actively engaged during the subsequent learning of new odors had no

effect on learning. These sets of imaging and silencing experiments reveal that the OFC is

only important during initial learning; once task structure has been acquired, it is no longer

needed. Task performance after initial task acquisition must therefore be accommodated

by other brain regions that can store the learned association for long durations.

We therefore searched for other brain regions that held learned associations long-term.

In the medial prefrontal cortex (mPFC), we observe that the learned representation persists

throughout the entire course of training. Unlike the OFC, not only does this representation

encode the positive expected value of CS+ odors, it also encodes the negative expected

value of CS- odors in a non-overlapping ensemble of neurons. We further show through

optogenetic silencing that this representation is necessary for task performance after the task

structure has already been acquired. Therefore, while the OFC representation is required

for initial task acquisition, the mPFC representation is required for subsequent appetitive

learning and performance. Why would a learned representation vanish in the OFC and be



transfered elsewhere? We hypothesize that the brain may allocate a portion of its real estate

to be a cognitive playground where experimentation and hypothesis testing takes place.

Once this area solves a task, it may unload what it has learned to storage units located

elsewhere to free up space to learn new tasks.

We further imaged another associative area, the basolateral amygdala (BLA), and found

a representation of positive value that appears to be generated from a Hebbian learning

mechanism. However, the silencing of this representation during learning had no effect.

This suggests that while multiple and distributed brain areas encode cues that predict the

reward, not all may be necessary for the learning process or for task performance.

In summary, we have described a series of experiments that map the representation and

function of different associational areas that underlie learning. The data and the techniques

employed have the potential to significantly advance the understanding of learned behavior.



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 The Piriform Cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 The Piriform Cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 The Orbitofrontal Cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 The Orbitofrontal Cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 The Medial Prefrontal Cortex . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

i



4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 The Basolateral Amygdala . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.1 Piriform Cortex Provides a High Dimensional Odor Representation . . . . 180

6.2 OFC Provides a Blank Slate for Learning New Tasks . . . . . . . . . . . . 182

6.3 mPFC Stores Task Information and Drives Behavior Downstream . . . . . 186

6.4 BLA’s Role in Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.5 Model of Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

ii



List of Figures

1.1 Sensory neurons expressing a single olfactory receptor are distributed in the

nasal epithelium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Axons of ORNs expressing a specific OR project with spatial precision to a

defined loci within the bulb. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Odor-evoked responses in the olfactory bulb display spatial stereotypy. . . . . . 14

1.4 M/T cells projections to cortical and subortical structures. . . . . . . . . . . . . 16

1.5 Odor-evoked piriform ensembles are sparse and non-overlapping. . . . . . . . 18

1.6 Activation of subsets of piriform neurons drives either appetitive or aversive

behavior when paired with reward or shock, respectively. . . . . . . . . . . . . 20

2.1 Mice Display Robust and Selective Anticipatory Licking to CS+ odors. . . . . 35

2.2 Piriform responses to odors are typically robust, selective, and have onsets at

odor delivery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Piriform responses occur at odor onset and are consistent across trials. . . . . . 39

2.4 Population PSTH of Piriform Responses to Odors and US. . . . . . . . . . . . 41

2.5 Piriform Responses Appear Largely Stable During Learning. . . . . . . . . . . 43

2.6 Odor-evoked Ensembles Experience Slight Increases in Size and Selectivity

After Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iii



2.7 Odor-evoked Ensembles Experience Slight Increases in Size and Selectivity

After Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8 Odor Identities Can be Decoded from Piriform Neurons Across Many Days of

Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.9 Repeated odor exposure drives similar changes in piriform representations as

during odor learning PT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.10 Repeated odor exposure drives similar changes in piriform representations as

during odor learning PT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Antero-posterior view of the orbitofrontal cortex. . . . . . . . . . . . . . . . . 81

3.2 OFC Population Activity Before and After Learning. . . . . . . . . . . . . . . 83

3.3 Pairwise Decoding of Odors Using OFC Population Activity. . . . . . . . . . . 85

3.4 OFC neurons acquire responses to CS+ odors during learning. . . . . . . . . . 87

3.5 Quantification of Odor-Evoked Responses Before and AFter Learning. . . . . . 89

3.6 Quantification of Overlap Before and After Learning. . . . . . . . . . . . . . . 91

3.7 OFC responses are variable and temporally heterogeneous. . . . . . . . . . . . 93

3.8 Consistency of OFC Responses to Odors Before and After Learning. . . . . . . 95

3.9 False negative CS+ trials are similar to true positive CS+ trials. . . . . . . . . . 97

3.10 Responses to CS+ and CS- Odors Reverse After Reversal Learning. . . . . . . 99

3.11 OFC Responses are Gated by State and Context. . . . . . . . . . . . . . . . . . 101

3.12 Pairing Laser Activation with Reward Evokes Similar CS+ Responses in OFC

as Odor-Pairing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.13 Activation of Jaws reliably inhibits neural activity in OFC. . . . . . . . . . . . 105

iv



3.14 OFC Inhibition Impairs Associational Learning During Discrimination. . . . . 107

3.15 Quantification of Behavioral Effects with OFC inhibition. . . . . . . . . . . . . 109

3.16 OFC Inhibition Impairs Associational Learning During Pre-Training. . . . . . . 111

3.17 Quantification of Behavioral Effects During Pre-training with OFC inhibition. . 113

3.18 OFC Inhibition Does not Impair Discrimination Learning After Pre-Training. . 115

3.19 OFC Inhibition Causes Same Behavioral Deficits in a Freely Moving Behav-

ioral Paradigm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.20 OFC Responses Decay After Learning has Plateaued. . . . . . . . . . . . . . . 119

3.21 Quantification of Response Decay After Initial Learning. . . . . . . . . . . . . 121

3.22 OFC is not Engaged During Learning of Subsequent Associations. . . . . . . . 123

3.23 OFC is not Engaged During Learning of Subsequent Associations. . . . . . . . 125

4.1 mPFC Population Activity Before and After Learning . . . . . . . . . . . . . . 135

4.2 mPFC is Engaged During Learning of Subsequent Associations . . . . . . . . 137

4.3 mPFC and OFC Responses Have Opposite Time-courses During Pre-Training

and Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.4 mPFC CS+ Responses are greater in amplitude after discrimination learning . . 141

4.5 mPFC is Necessary for Learning of Subsequent Associations . . . . . . . . . . 143

4.6 Inhibition of mPFC During Pre-training does not Impair Learning . . . . . . . 145

4.7 Inhibition of mPFC During Discrimination Training Impairs Learning . . . . . 147

4.8 mPFC generates non-overlapping CS+ and CS- ensembles . . . . . . . . . . . 149

5.1 BLA Population Activity Before and After Learning . . . . . . . . . . . . . . 162

5.2 Pairwise Decoding of Odors Using BLA Population Activity . . . . . . . . . . 164

v



5.3 BLA neurons acquire responses to CS+ odors during learning . . . . . . . . . . 166

5.4 Quantification of Odor-Evoked Responses Before and AFter Learning . . . . . 168

5.5 BLA responses are temporally homogeneous . . . . . . . . . . . . . . . . . . 170

5.6 BLA responses are temporally homogeneous . . . . . . . . . . . . . . . . . . 172

5.7 Inhibition of BLA has no effect on behavior or on OFC representation . . . . . 174

5.8 Inhibition of OFC impairs the BLA representation . . . . . . . . . . . . . . . . 176

5.9 Inhibition of OFC impairs learning . . . . . . . . . . . . . . . . . . . . . . . . 178

vi



Acknowledgements

The work described in this thesis is the culmination of 6 years of work, none of which would

have been possible without the contributions and support of those around me.

First and foremost I would like to thank my family. I would not have achieved all I have

without your unconditional love and support.

Thank you to my undergraduate advisors, Joseph Fetcho and Carl Hopkins, who first

introduced me to neuroscience. Thank you for giving me the chance to work with you and

for believing that I had a future career as a neuroscientist.

I am also thankful to my collaborator, Cristian Boboila, for being an steadfast friend

and colleague. I would also like to thank Ashok Litwin-Kumar as a long-term collaborator,

and also to the technicians who have helped with this project: Kristen Lawlor, Matthew

Chin, and Philip Shamash.

Thank you to Columbia’s doctoral program in Neurobiology and Behavior for providing

a great place to do good science. Thank you to Carol Mason, Darcy Kelley, Wes Grueber,

and Ken Miller for your help in my early days at Columbia.

Thank you to all members in the Axel lab, as well as my friends in the Neurobiol-

ogy program. Thank you to Phyllis Kisloff, Miriam Guiterrez, Adriana Nemes, Monica

Mendelsohn, Nataliya Zabello, and Clayton Eccard for all your assistance over the years.

vii



Thank you to Stefano Fusi, Rui Costa, and Bob Datta for serving on my committee.

Your time and input are greatly appreciated.

Thank you to my friends outside of lab, Taiga Abe, Arnold Ha, Brien Lee, Max Liu,

David Plotkin, Philip Shinn, Bert Vancura, Jeff Zhang, and Jay Zhang, and to my girlfriend,

Connie Li, who have each made me so happy and have kept me mentally at peace towards

the end of my PhD.

Finally, thank you to my thesis advisors, Richard Axel and Larry Abbott, who have

both taught me invaluable lessons throughout my time at Columbia. You have shown me

the importance of diligence, care, and creativity in experimentation, and have taught me

how to think simply and critically. I would have achieved none of this without you and am

forever indebted to you both, thank you.

To Richard, thank you for your patience, your understanding, and for your guidance

over the years. I hope to make you proud in science in the years to come.

viii



Dedication

To mom and dad

ix



Chapter 1

Introduction

All organisms are alike: they must seek out food, shelter, and potential mates while avoid-

ing danger in a constantly changing environment. Sensory stimuli such as mating calls or

predator odors are highly predictive of future reward and risk, and organisms have evolved

hardwired circuits that respond to these invariant predictive cues to drive appropriate be-

havioral repertoires. However, most stimuli do not have innate significance, and meaning

must be imposed upon these stimuli through experience. The brain must therefore attach

significance to specific sensory stimuli through learning. A fundamental challenge in neu-

roscience is to understand how and where meaning is imposed in the brain during learning.

Over the past 50 years, tremendous advances have been made in the understanding

of neural circuits that underlie learned behaviors. More recently, the ease with which new

genetic tools can be used to observe and perturb neural activity in defined neural populations

in mice have made it a powerful model system to study neural circuits. We use the olfactory

system to study learning in mice for two reasons. One, mice heavily rely on its sense of

smell to interact with its surroundings. Many of its behavioral responses, such as predator

avoidance or food scavenging, are mediated by its sense of smell. Two, the anatomical

organization of the olfactory system is concise in that there are relatively few synapses

separating the sense organ (nose) from brain areas implicated in learning. Thus, the circuits
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for learned olfactory behaviors appear to be relatively shallow and more tractable that other

sensory systems.

The mouse olfactory system

Odor perception is initiated by the binding of odors onto olfactory receptors expressed

in the nasal epithelium. Olfactory receptors are a class of G protein-coupled seven-

transmembrane proteins, and are encoded by the largest gene families known to exist in

the animal genome (Mombaerts 1999). Each olfactory receptor neuron (ORN) expresses

one of 1500 different receptor genes, and receptor neurons expressing the same olfactory

receptor are dispersed randomly within the 4 zones of the nasal epithelium (Vassar et al.

1993; Ressler et al. 1993; Buck and Axel 1991; Godfrey et al. 2004; Zhang and Firestein

2002) (Figure 1.1). Each olfactory receptor binds to multiple structurally distinct odors;

conversely, each odor binds to multiple olfactory receptors. As such, individual odors are

detected by a unique subset of olfactory receptor neurons and therefore evoke activity in a

spatially distributed pattern of neural activity within the nasal epithelium. This combinato-

rial coding underlies the mouse’s ability to detect and discriminate between different odors

(Malnic et al. 1999).

Neurons expressing a given receptor project with precision to two spatially invariant

loci within the olfactory bulb, termed olfactory glomeruli (Ressler et al. 1994; Mombaerts

et al. 1996; Vassar et al. 1994) (Figure 1.2). This convergence is genetically determined,

as axons expressing the same receptor converge upon the same location across all mice.

Therefore, any given odor induces the same pattern of glomerular activity across animals
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(Soucy et al. 2009; Belluscio and Katz 2001; Bozza et al. 2004). Functional studies indi-

cate that physiological concentrations of odor elicits activation in about 5% of all glomeruli

(Lin et al. 2006). Therefore, odor activation in the sense organ is transformed into a discrete

spatial map of glomerular activity in the olfactory bulb (Figure 1.3). Unlike other senses,

no chemotopic order was apparent in responses elicited by odors in the olfactory bulb when

glomeruli on the dorsal surface were imaged during odor presentation. Nearby glomeruli

were as diverse in their odor sensitivity as distant glomeruli(Soucy et al. 2009). How-

ever, the bulb may be spatially organized to segregate innate odor responses from learned

odor responses; genetic ablation of glomeruli on the dorsal olfactory bulb abolishes innate

behavioral responses while leaving learned olfactory responses intact (Kobayakawa et al.

2007).

The axons of ORNs are received by mitral and tufted (M/T) cells, the main projection

neurons of the olfactory bulb. M/T cells appear to be hardwired to receive input from a

single glomerulus, and therefore faithfully preserve the segregation of ORN odor responses

into distinct glomerular channels (Shepherd 1998). While M/T cells share similar tuning as

their corresponding ORN inputs, local interneurons within the bulb appear to modulate and

sharpen the selectivity of M/T odor responses compared to their ORN inputs, especially at

high odor concentrations (Tan et al. 2010; Kikuta et al. 2013; Rinberg et al. 2006). M/T

cells then send axons to 5 higher-order brain areas, including the cortical amygdala and the

piriform cortex (Price and Powell 1970). The level of spatial stereotypy exhibited by M/T

projections to downstream areas appears to reflect the function of the downstream areas.

For instance, M/T projections to cortical amygdala appear to be spatially stereotyped across

mice and appears to be necessary for behavioral responses to innately salient odors such as
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predator scents (Sosulski et al. 2011; Root et al. 2014) (Figure 1.4). Indeed, optogenetic

inhibition of the cortical amygdala abolishes hardwired responses to innate odors while

sparing learned odor responses (Root et al. 2014).

In contrast, anatomic tracing reveals that axonal projections from M/T cells to the pir-

iform cortex discard the spatial stereotypy of the olfactory bulb. These bulbar projections

appear to be unstructured and distributed across the entirety of the piriform (Ghosh et al.

2011; Miyamichi et al. 2011; Sosulski et al. 2011) (Figure 1.4). In accord with this anatomy,

electrophysiological and optical imaging studies demonstrate that individual odorants acti-

vate distributed ensembles of piriform neurons without apparent spatial preference (Stettler

and Axel 2009; Poo and Isaacson 2009; Zhan and Luo 2010; Rennaker et al. 2007) (Fig-

ure 1.5). Therefore, the sensory representation in the primary olfactory cortex appears to

be fundamentally different from cortices of other sensory modalities, where stimulus fea-

tures are often topographically organized (HUBEL and WIESEL 1959; MOUNTCASTLE

1957).

These observations are consistent with a model where piriform neurons receive conver-

gent input from random subsets of olfactory glomeruli (Stettler and Axel 2009; Apicella

et al. 2010; Davison and Ehlers 2011). This model explains why individual piriform neu-

rons have unique odor receptive fields and respond to structurally and perceptually distinct

odors (Stettler and Axel 2009; Poo and Isaacson 2009; Zhan and Luo 2010; Rennaker et al.

2007; Davison and Ehlers 2011). Moreover, if piriform odor responses are different across

different mice, it is unlikely that piriform neurons would be evolutionarily hardwired to

drive specific behaviors. Rather, piriform neurons must acquire the ability to drive learned

behaviors through experience. This suggests that the piriform cortex plays an important
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role in olfactory learning. Indeed, the exogenous photo-activation of an arbitrarily chosen

ensemble of piriform neurons can be entrained to elicit either appetitive or aversive behav-

ioral responses through temporal pairing with rewards or punishments, respectively (Choi

et al. 2011) (Figure 1.6). Moreover, silencing of posterior piriform using pharmacogenetics

(DREADDs) blocks the retrieval of an olfactory fear memory while sparing innate odor re-

sponses (Sacco and Sacchetti 2010; Alexander et al. 2009). Therefore, the piriform is both

necessary and causal for olfactory learning.

Sparse encoding of sensory stimuli in large neural populations has been proposed to

facilitate learning in downstream associative circuits (Marr 1971). This framework has

been applied not only to granule cells in the cerebellum, but also to piriform neurons and

its invertebrate analogue, the Kenyon cells of the mushroom body. In this framework, in-

puts from M/T cells to piriform are random and fixed to generate a high dimensional odor

representation that is stable during learning. A sparse and high dimensional representation

allows for diverse and different odors to be encoded uniquely by non-overlapping neural

ensembles. This enhances the discriminability of chemically similar odors and thus facili-

tates the accurate recall of trained odors after learning (Litwin-Kumar et al. 2017). Learning

then modifies the connection strengths of piriform outputs to downstream associative areas.

After learning, re-activation of the same ensemble would drive the conditioned response.

Therefore, successful recall of a learned association depends upon the faithful re-activation

of the same odor ensemble that is paired with a salient stimulus during learning. However,

contrary to theory, past literature suggests that the response properties of piriform neurons

are modulated by learning (Calu et al. 2007; Chen et al. 2011; Li et al. 2008; Roesch et al.

2007; Sevelinges et al. 2004).
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Principal neurons of piriform cortex project to numerous areas that have been implicated

in learned behaviors, including the orbitofrontal cortex, striatum, and amygdala (Miyamichi

et al. 2011; Sosulski et al. 2011; Haberly and Price 1977). The potentiation of these projec-

tions may also drive learning-related changes in these downstream areas. Therefore, it is

currently unclear whether value is imposed onto an odor representation within the piriform

or in areas downstream. If valuewas imposed onto piriform neurons, then the representation

of a trained odor would be different after learning as compared to before. Addressing this

question directly would require a technique that tracks activity in a population of piriform

neurons during learning.

Novel Approaches for Tracking The Representation of Odor During

Learning in the Mouse Olfactory System and Beyond

Recording neural activity in deep brain structures has traditionally been done using extracel-

lular multielectrode arrays (Buzsáki 2004). Currently, state of the art multielectrode arrays

can record from as many as a thousand neurons simultaneously. Moreover, the precise spa-

tial distribution of recording sites allows for the triangulation of the locations of recorded

neurons (Csicsvari et al. 2003). Recent advances have also allowed for multi-electrode ar-

rays to chronically record the activity of multiple neurons (Sato et al. 2007). However, this

technique suffers from cell loss, glial scarring, and also drops in the number of functioning

electrodes over time due to accumulated damage in both electrode and brain tissue (Biran

et al. 2005).

Newly developed genetically encoded calcium indicators (GECIs) provides an alterna-
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tive to large-scale recordings of neural activity (Broussard et al. 2014). These proteins are

engineered to convert changes in calcium ion concentration into changes in fluorescence.

Neural activity triggers large and rapid calcium influx through voltage-gated calcium chan-

nels. Therefore, the imaging of calcium activity through GECIs can be used as a reliable

proxy to measure neural activity across populations of neurons. Moreover, genetic targeting

through viral or transgenic approaches allow for the expression of GECIs to be restricted to

defined cell populations (Chen et al. 2012). This gives unprecedented experimental control

over the study of a particular neuron population, such as somatostatin neurons in the motor

cortex or excitatory CA1 neurons in the hippocampus. In particular, the recently developed

probe GCaMP6 allows for the detection of neural activity with extremely high signal-to-

noise ratios in awake and behaving mice that are an order magnitude higher than previous

GECIs (Chen et al. 2013).

However, imaging has traditionally been restricted to the brain surface (Chen et al.

2012). Recently, the application of optical microendoscopy has allowed for neural activity

from deeper brain areas to be imaged. Miniature endoscopes called gradient index (GRIN)

lenses can be inserted into deeper brain regions to transmit fluorescence emissions from

deep brain tissue onto the surface of the lens to be collected. This can be combined with

the imaging capabilities of a two-photon microscope to reduce bleaching and light scatter-

ing. A few groups have currently adapted 2-photon endoscopic imaging to image calcium

dynamics in deep areas such as geniculate ganglion neurons (Barretto et al. 2015), the me-

dial prefrontal cortex (mPFC) (Otis et al. 2017), and the basolateral amygdala (Grewe et al.

2017). Motion appears to be limited, especially in areas that lie closer to the dorsal surface

of the brain and if mice are head-fixed. Moreover, this approach allows for the identi-
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fication of neurons across multiple days of imaging. While neurons will certainly shift

slightly across different days like in multielectrode array recordings, the high spatial reso-

lution of 2-photon microscopy allows for neuronal shape to be visualized. Therefore, with

current registration techniques, one can easily align and register the identities of neurons

across multiple imaging days by aligning the spatial profiles of neurons across different

days (Pnevmatikakis et al. 2016). Moreover, because the lens is firmly cemented against

the cranium, there appears to be minimal amounts of tissue damage even after months of

imaging following a brief post-surgery recovery period (Ziv et al. 2013).

We have adapted this microendoscopic imaging technique to track neural activities in

the piriform cortex and its downstream regions, the orbitofrontal cortex, the basolateral

amygdala, and the medial prefrontal cortex during learning. This method allows us to an-

swer a fundamental question in all these brain areas: how do neural representations change

as a function of experience? Specifically, in the piriform cortex, does the robust encoding

of odor identity change dramatically as a function of learning, or is it preserved (Calu et al.

2007; Chen et al. 2011; Li et al. 2008; Roesch et al. 2007; Sevelinges et al. 2004)? Like-

wise, what specific changes occur in neural representations in downstream associative areas

such as the OFC, bLA and mPFC during learning? The imaging of neural activity during

learning in piriform and its downstream areas allows us to map how sensory information is

transformed in cognitive areas.

The ability to track neural activity over time in genetically defined subpopulation of

neurons allows us to study neural representations in unprecedented detail. First, we are able

observe and quantify the consistency of neural responses across different days, which can-

not be done using multi-electrode arrays. Second, we can answer fundamental questions
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of neural coding by analyzing the properties of neurons that experience learning-related

changes. For example, previous studies found that BLA neurons potentiate their responses

to a CS after it is paired with an aversive US (Quirk et al. 1997). This has generated a Heb-

bian model in which CS inputs are potentiated specifically onto ’fear cells’ that are also

responsive to US. By imaging neural responses before and after learning, we can unequiv-

ocally answer this question by analyzing whether potentiated CS responses only occur in

US-responsive neurons.

We have applied this imaging method in transgenic mice that express GCaMP6s in the

majority of excitatory neurons to examine changes in odor representations during learning.

The application of this new imaging technique has allowed us to gain insight into how odor

information is represented in the piriform cortex, how odor information is transformed as

it passes from the piriform to downstream associative areas, and finally, what roles these

downstream areas may play in odor learning. The imaging method that we have developed

is widely applicable and can be applied to image any deep brain area to understand how

neural representations change through time. Informed by our imaging results, we can then

directly test hypotheses on the roles of each downstream areas during learning, as revealed

in chapters 2, 3, and 4. This approach can also be combined with newly developed opto-

genetic probes to conduct simultaneous optical perturbation and imaging experiments in

awake, behaving mice (chapters 3 and 4).

9



Figure 1.1
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Figure 1.1. Sensory neurons expressing a single olfactory receptor are distributed
in the nasal epithelium. Neuronal distribution of P2 OR expression in the olfactory
epithelium was assayed in whole-mount specimens. P2-IRES-tauGFP Mice. GFP was
imaged by its intrinsic green fluorescence. Adapted from Vassalli et al. 2002.
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Figure 1.2
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Figure 1.2. Axons of ORNs expressing a specific OR project with spatial precision to
a defined loci within the bulb. View of the nasal septum and the medial aspect of the
bulb. P2-IRES-tau-lacZ Mice, Stained with X-Gal. Adapted from Mombaerts et al. 1996.
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Figure 1.3
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Figure 1.3. Odor-evoked responses in the olfactory bulb display spatial stereotypy.
Odor response maps from two mice (butyraldehyde (A and B) and 2-hexanone (C and
D)). Synapto-pHlouorin (sph), an indicator of synaptic release, was expressed in all ORNs
(OMP-spH mice), and percentage change in fluorescence was quantified in pseudo-colored
maps. Spatial patterns of odor-evoked activity are similar for the same odor in different
mice, but were distinct for different odors in the same mouse. Scale bar, 500 μm. Adapted
from Bozza et al. 2004.
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Figure 1.4
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Figure 1.4. M/T cells projections to cortical and subortical structures. A. Flattened
hemi-brain preparation with olfactory bulb targets outlined (AON, anterior olfactory nu-
cleus; AMG, cortical amygdala; ENT, lateral entorhinal cortex; LOT, lateral olfactory tract;
OT, olfactory tubercle). B. Flattened hemibrain preparation in which a single glomerulus
was electroporated with TMR-dextran (shown in red) to label the axonal projections of
M/T cells. Projection patterns to piriform are diffuse across different mice, whereas pro-
jection patterns to cortical amygdala display spatial stereotypy. C. Images of the cortical
amygdala reveal similar projections from mitral and tufted cells that connect to the same
glomeruli in two different brains (comparing top and bottom for glomeruli MOR1-3 and
MOR28). However, these projection patterns are unique for different glomeruli, visualized
when comparing the projection patterns from the MOR1-3, MOR28, or from a random
glomerulus. Circle = approximate posterolateral cortical nucleus boundary; scale bar = 400
µM. Adapted from Sosulski et al. 2011.
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Figure 1.5

18



Figure 1.5. Odor-evoked piriform ensembles are sparse and non-overlapping.
Octanal-responsive cells (red) overlayed on the responses to five other odors (green) in the
piriform cortex. Cells that respond to both odors are in yellow. Each odor evokes responses
in largely non-overlapping ensembles of piriform neurons. Scale = 50 µm. Adapted from
Stettler and Axel 2009.
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Figure 1.6
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Figure 1.6. Activation of subsets of piriform neurons drives either appetitive or aver-
sive behavior when paired with reward or shock, respectively. A. Lentivirus carrying
ChR2:EYFP-IRES-nCherry (nuclear Cherry) flanked by loxP sites and under control of the
EF1alpha promoter was coinjected into piriform with a second lentivirus carrying the hSy-
napsin1 promoter driving Cre:EGFP. This dual virus strategy was used to generate sparse
labeling of piriform neurons expressing ChR2. nCherry (red) labels the cell bodies whereas
EYFP (green) labels both cell bodies and processes. B. 40% of cells (right) expressing
ChR2 also expressed c-Fos, a marker of neuronal activity, whereas 5% of cells were pos-
itive for c-Fos expression in uninjected controls (left). C. Average licks to rewarded odor
when reward was paired with ChR2 activation (CS+) versus an unrewarded odor (CS-). D.
Repeatedly pairing the activation of the same subset of piriform neurons with shock elicits
a freezing response after training. Adapted from Choi et al. 2011.
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Chapter 2

The Piriform Cortex

2.1 The Piriform Cortex

The piriform is the largest andmost well-studied of all cortical areas that receive direct input

from the olfactory bulb. Axons from M/T cells terminate in the superficial layer Ia of the

piriform, whereas layer Ib contains fibers arising from the extensive recurrent connections

that aremade between the principal neurons of the piriform (Suzuki and Bekkers 2007). The

cell bodies of principal neurons primarily reside in layers 2, and layer 3 is a combination

of principal and GABAergic neurons (Protopapas and Bower 2000; Suzuki and Bekkers

2006). Principal neurons of the piriform cortex can be divided into two types, pyramidal

and semilunar cells, each presumed to play different roles in the processing of olfactory

information (Suzuki and Bekkers 2006). Further beneath layer 3 is the endopiriform cortex,

which is populated with multipolar neurons (Bekkers and Suzuki 2013).

Imaging and electrophysiological studies have revealed that piriform odor responses can

be either broadly or narrowly tuned to odor and often respond to odors that are molecularly

diverse (Zhan and Luo 2010; Stettler and Axel 2009). Moreover, these studies demonstrate

that odors evoke activity in sparse, spatially distributed neuron ensembles with no apparent

spatial preference (Stettler and Axel 2009; Poo and Isaacson 2009). In addition, global in-
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hibitory suppression is observed; neurons responsive to an odor presented by itself may not

respond when the same odor is presented as a mixture (Stettler and Axel 2009). Moreover,

supralinear enhancement of odor responses is also observed; neurons can respond more to

a mixture of odors than would be predicted by the linear sum of the individual odor-evoked

activities (Stettler and Axel 2009).

As mentioned in Chapter 1, the piriform mediates learned olfactory behaviors. How-

ever, it is open to debate whether changes in neural activity due to learning occur within the

piriform, or if responses are preserved and then modified downstream. In support of the the

former, olfactory learning appears to potentiate associational inputs from the orbitofrontal

cortex onto the piriform, which is likely to alter piriform responses to odor (Cohen et al.

2008). Indeed, several studies have observed that learning drives changes in the odor re-

sponses of piriform neurons, particularly in the posterior piriform cortex (Calu et al. 2007;

Chen et al. 2011; Roesch et al. 2007). Upon closer examination, however, most of these

changes do not appear to be particularly striking. Even in the posterior piriform, changes

in firing rates due to learning appears limited to a few spikes per second. Even when such

changes were taken to be significant, most piriform neurons in reported studies appear to

preserve their odor responses under task learning, especially compared to odor-evoked re-

sponses in associative areas such as the orbitofrontal cortex (Roesch et al. 2007).

Therefore, we sought to definitively answer the question of whether odor responses

in the piriform are stable during learning. We first established a head-fixed associational

learning assay that permitted simultaneous imaging of neural activity during behavior. Our

requirements for the task were that it minimizes the number of variables that could poten-

tially be encoded, that it could be learned within several imaging sessions, and that it is not
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distressful to the mice as to permit stable imaging without appreciable head motion. For

this purpose, we settled on a simple classical odor training paradigm where paired odors

(CS+) predicted the onset of reward and other unpaired odors do not (CS-). Mice rapidly

learn within 2 to 3 imaging sessions and display robust anticipatory licking to the CS+

odors. Moreover, mice are not distressed during this task and are almost never observed to

struggle or head-jerk.

As introduced in Chapter 1, we employ 2-photon endoscopic imaging of calcium ac-

tivity to track activity in piriform neurons during learning. We demonstrate the majority of

piriform neurons do not alter their odor responses significantly during learning. Moreover,

we imaged odor responses while passively exposing the same odors to mice over multiple

days and found that piriform responses change to a similar degree as if the odors were asso-

ciated with reward. Therefore, most piriform responses are preserved, and while changes

in odor responses do exist, they appear to be unrelated to learning.

2.2 Results

We first asked whether odor representations in the piriform change during learning. Mice

were trained in a classical odor discrimination task that permitted simultaneous imaging of

neural activity. Mice were given trials of two odors (CS+) that predicted a water reward

(US) after a short delay, two unrewarded odors (CS-), and the US by itself. Most mice

displayed selective anticipatory licking to CS+ odors in three to four training sessions (10-

15 trials of each odor per session) (Figure 2.1A). After learning, almost all mice display

anticipatory licking in more than 95% of all CS+ odor trials. The anticipatory lick rate for
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both CS+ and CS- odors is shown for all mice with GRIN lens placed in the piriform (n = 5)

(Figure 2.1B). The intensity of anticipatory licking varies greatly across mice; while some

mice will only lick 3 times before water delivery, others will lick on average 15 times in the

4.5 second period prior to water delivery for the CS+ odors. To monitor neural activity dur-

ing training, we implanted a microendoscope above the piriform of transgenic GCaMP6S

mice (VGLUT2-ires-Cre X rosa-FLEX-GCaMP6S) (Vong et al. 2011; Madisen et al. 2015).

In future experiments, we assessed learning rate in the same task with lenses implanted in

the OFC and BLA. Learning rate appears to be slightly affected by lens placement in the

BLA relative to mice with lenses in piriform and OFC, but this change was not statistically

significant (p > 0.05, Wilcoxon rank-sum test) (Figure 2.1C).

CS+, CS-, and US responses were imaged before, during, and after learning. Using

this approach, we were able to track the neural activity of a population of neurons for over

a week of training. A total of 350 neurons in 5 mice were tracked across an average of

4 training sessions. Odor-evoked responses typically are consistent, selective, and start

immediate after odor delivery (Figure 2.2, Figure 2.3). On a population level we observe

that odors activate sparse, distributed ensembles of piriform neurons characterized by low

degrees of overlap with other odor ensembles (Stettler and Axel 2009; Poo and Isaacson

2009; Zhan and Luo 2010; Rennaker et al. 2007). We find that on average, 10% of neurons

were active to a given odor prior to learning (Figure 2.6). Also consistent with previous

work, we further observe global and non-selective suppression in response to odor delivery

(Stettler and Axel 2009; Poo and Isaacson 2009) (Figure 2.4).

When we tracked the odor tuning of piriform neurons across learning, we observe that

the majority of odor-evoked responses remained stable across learning. This is clear when
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we sort responses by maximum odor-evoked activation before learning and align to re-

sponses after learning (Figure 2.5). To quantify this observation, we identified all signifi-

cant responses to CS+ and CS- odors prior to learning (61 CS+ and 66 CS- responses after

pooling both CS+ and CS- odors). We observed that 12/61 CS+ and 10/66 CS- responses

decreased within 3-4 days of learning (Figure 2.7A). Conversely, 2/61 CS+ and 2/66 CS-

responses that were significant prior to learning increased during learning.

We also assessed whether new odor responses were acquired during learning (Figure

2.7A). A neuron may be unresponsive to all four odors prior to learning and may acquire

new responses to each odor during learning. Therefore, for each neuron, we counted each

odor response as an independent data point, for a maximum of 2 silent CS+ responses and 2

silent CS- responses per neuron. We had a total of 657 silent CS+ responses and 652 silent

CS- responses. We observed that 5% (32/657) of silent CS+ responses and 3.3% (23/652)

of silent CS- responses converted to a significant response during learning. In other words,

on average, 5% / 2 = 2.5% (1.6%) of neurons acquired a new CS+ (CS-) response.

While this appears to be a small fraction, we note that prior to learning, each odor

only activates 10% of all piriform neurons, and therefore these new responses constitute a

significant fraction of the odor-evoked ensemble. The net effect of all observed changes,

while not being statistically significant (p > 0.05, Wilcoxon signed-rank test) increased

the average odor ensemble size, from 10% before learning to 12% after learning (Figure

2.6A). This is also reflected by the observation that fewer neurons are unresponsive to odor

post-learning (75% before learning to 61% after learning, p > 0.05, Wilcoxon signed-rank

test) (Figure 2.6B-C). In conclusion, while significant changes in odor representation are

observed, the majority of odor responses present prior to learning were retained during
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learning.

We quantified the above changes in neural representation by setting a threshold over the

level of fluorescence change that must be surpassed for a odor response to be considered

as significantly altered during learning. Increasing this threshold decreases the frequency

of observed changes, while lowering the threshold increases the rate of change. To show

in an unbiased way that the threshold we picked reflects consistency of odor responses in

the majority of piriform neurons, we asked whether we could decode odor identity from

the population response on the last imaging day when it is trained on responses on the first

imaging day, and vice versa. As a positive control, we trained the decoder on a subset of

trials from two odors on the same day and confirmed that the decoder accurately classifies

the identity of odors from held-out trials (3% error rate for all odor pairs). We then trained a

binary linear decoder on a pair of odors on the first day and asked whether responses of the

same odors on the last imaging day could be accurately classified. Indeed, the decoder was

able to correctly classify odor identity with low error rates (8%, averaged across all odor

pairs). We note that the error was higher when decoding the identities of two CS+ odors

versus that of two CS- odors (10% versus 5%), which is likely due to more responses being

lost and gained for CS+ odors than CS- odors during learning (Figure 2.7A). Therefore,

while we have observed significant changes during learning, odor identity for both CS+

and CS- odors was largely preserved.

We next asked whether piriform responses observed before and after learning are pre-

dicted by a model where every piriform neuron has an equal probability of being activated

by any odor. In this model, if odor A and B each activate a random 10% of piriform neurons,

then 10% of the odor A ensemble will overlap with the odor B ensemble, and vice versa. For
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the purpose of this analysis, we have excluded a subset of neurons that are non-selectively

tuned to odors (3% vs .01%) because their existence is not predicted by a randommodel and

may constitute a different population of neurons that receives input from large numbers of

glomeruli (Stettler and Axel 2009). However, even after exclusion of non-selective respon-

ders, the level of overlap is still much greater than predicted by chance prior to learning,

and also greater than previously reported studies (23% overlap vs 10% by chance, Figure

2.7B). This may be due to the use of odors that activate correlated sets of glomeruli, as such

correlations in glomerular activation will also be passed onto the piriform as well (Schaffer

et al. 2018).

Decoding analysis suggests that these odor ensembles are more separable post-learning

compared to pre-learning (3% error rate pre-learning, 0% error rate post-learning). This

decrease in overlap between different odor ensembles must reflect an increase in the degree

of odor selectivity of individual neurons. Indeed, we find a larger percentage of neurons

are selective to only 1 or 2 odors in the odor panel post-learning (18% before learning, 25%

after learning). Therefore, while we observe more odor-responsive neurons post-learning

(10% before learning, 12% after learning), we also observe that these ensembles share less

overlap (23% to 19%, Figure 2.7B). These results are not what would be predicted from

a random model, which predicts an increase in overlap if odor-evoked ensemble size in-

creases. Therefore, while the effects are subtle, it is likely that there are active mechanisms

either pre-synaptic to or within the piriform that decorrelate the piriform representations of

odors that have been previously experienced. The combined effects of increased recruit-

ment and increased selectivity of responsive neurons serve to enhance the discriminability

of different odor ensembles.
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Are these changes learning-dependent or simply a by-product of passive odor exposure

across multiple days? Responses to both CS+ and CS- odors are altered during learning,

and the level of overlap between CS+/CS+, CS-/CS+, and CS-/CS- ensembles appear to

either stay the same or decrease slightly during learning 2.7A-B). Therefore, it appears that

there is nothing special about the changes that occur in CS+ ensembles, and this lack of

privilege suggests to us that the observed changes may largely be explained by repeated

odor exposure.

We tested this hypothesis directly by imaging changes in neural representation during

passive odor exposure. After mice were trained to perform the olfactory discrimination

task, a new set of 4 odors were delivered for each experimental animal without training.

Each odor was passively presented to mice for 12-15 trials per training session in a pseudo-

random order. All experimental variables remained the same except that the water port

was not present and odors were not paired with reward. We found that qualitatively similar

changes occurred during passive odor exposure compared to during odor learning. While

odor ensemble sizes did not increase (12% to 12%, Figure 2.9.A), piriform neurons became

more selective to exposed odors after repeated exposure (Figure 2.9.B,C). More neurons

were responsive to 1 or 2 odors out of the 4-odor panel, and fewer neurons were responsive

to 3 or all odors out of the 4-odor panel after repeated exposure. This effect also manifested

itself when we looked at the level of ensemble overlap between different odor ensembles.

On average, odor ensembles shared less overlap after repeated odor exposure, with the

percentage of overlapping neurons decreasing from an average of 20% of 10% (p > 0.05,

Wilcoxon signed-rank test, Figure 2.7.B).

In summary, while we observe significant changes in odor representation within the
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piriform during odor learning, we also observe qualitatively similar changes to occur dur-

ing repeated odor exposure. The bulk of the changes that occur during odor learning are

unlikely to be due to supervised or associational learning, but are likely reflective of an

unsupervised mechanism that is sensitive to repeated odor exposure. These changes bias

the piriform to respond to frequently experienced odors with greater selectivity, which may

aid in the learning and discrimination of these odors in circuits downstream of the piriform.

2.3 Discussion

In accord with previous electrophysiological and imaging results, our results reveal that

odor representations in the piriform are sparse, distributed, and unique. In agreement with

previous reports, odors selectively activate 5-15% of piriform neurons and non-selectively

inhibit another significant population (Stettler and Axel 2009; Poo and Isaacson 2009).

Similar to previous experiments, we have also observed changes in odor representation

during task learning. However, unlike other papers, we argue such changes are not due

to learning. Rather, they appear to reflect an unsupervised mechanism that increases the

discriminability in the piriform ensembles of experienced odors. Increasing the separability

of different odor ensembles may aid in the future assignment of valence in the downstream

projections of these ensembles during supervised learning.

We assume in a random model that 1) projections from the bulb to the piriform are

random and 2) that odors activate independent and uncorrelated sets of glomeruli. The av-

erage overlap that we observe in our imaging studies between any pair of odor ensembles

is significantly higher than predicted in this random model (24% compared to 12%), and
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also higher than what has been previously described (Poo and Isaacson 2009; Stettler and

Axel 2009). The calculation of overlap is highly susceptible to the arbitrary thresholds used

to determine significant responses and significant overlap, so it is difficult to compare be-

tween studies. Moreover, odors that share high overlap in glomerular activation also shares

high overlap in piriform responses ( 25% overlap). The odors that we selected may activate

highly correlated sets of glomeruli and may in turn pass on these correlations upwards into

the piriform (Stettler and Axel 2009).

In a randommodel, only 0.01% (0.1th) of neurons will respond to all 4 odors if odors ac-

tivate 10% of piriform neurons on average, as has been experimentally observed. However,

in previous and current imaging experiments, we observe a small but significant subset of

piriform neurons (3%) that respond robustly to all tested odors (Stettler and Axel 2009).

Therefore, a model of random connectivity fails to account for the over-representation of

non-selectively tuned odors, and we suggest that these neurons may constitute an unique

subset of piriform neurons primed to receive inputs from a large collection of glomeruli.

While sparse and random connectivity will generate decorrelated odor ensembles, it

does not constrain the sizes of odor-evoked piriform ensembles to be sparse. Without any

normalization, the number of odor-evoked piriform neurons will be directly related to the

number of active glomerular inputs, and large variances in ensemble size will result in poor

classification performance. Indeed, we observe that odor-evoked inhibition is widespread

and non-selective in the piriform. Prior work has shown that global inhibition is likely to

reflect the fact that local interneurons receive ubiquitous odor-evoked excitation from a high

convergence ofM/T cells and output local inhibition to surrounding principal cells (Poo and

Isaacson 2009). Within this scheme, inhibition will scale with total glomerular activity, and
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only the cells that receive the strongest excitation will be driven to spike. Therefore, this

inhibition is poised to normalize input activation such that odor-evoked piriform ensembles

are constrained to be sparse regardless of the level of input activation.

Unsupervised Learning of Piriform Neurons

Previous work by our lab and others have suggested that the connections from the olfac-

tory bulb to the piriform are sparse (Sosulski et al. 2011). Retrograde tracing studies have

estimated that an average of 4 mitral outputs converge onto each piriform neuron, though

this is likely to be a severe underestimate given the low efficiency of retrograde transport

(Miyamichi et al. 2011).Indeed, a substantially higher estimate of 200 mitral outputs onto

each piriform neuronwas derived from functional studies that assesses connectivity bymea-

suring piriform responses to glutamate uncaging of loci within the olfactory bulb (Davison

and Ehlers 2011). Given that uncaging likely activates more than single glomeruli, and that

the efficiency of trans-synaptic retrograde tracing was less than 100%, the true convergence

number is likely between these two upper and lower bounds.

Previous work also suggests that the connectivity profile from the bulb to the piriform is

random. Random synaptic wiring has been shown to maximize the dimensionality of odor

representation in the piriform. This is because correlations between glomerular projections

reduces the dimensionality of odor representations, and randomwiring prevents such corre-

lations from occurring (Babadi and Sompolinsky 2014; Litwin-Kumar et al. 2017). How-

ever, similar odors will activate similar sets of glomeruli, and existing input correlations

will nevertheless persist downstream in piriform representations despite having random
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connectivity (Schaffer et al. 2018). Therefore, it is difficult to accurately deduce projec-

tion patterns based upon the imaging of odor responses, especially without knowing what

fraction of the bulb is activated by the odors.

Several previous results have suggested that piriform odor responses are modified as

a result of associative learning (Calu et al. 2007; Chen et al. 2011; Roesch et al. 2007).

While we observe that a significant fraction of odor-evoked responses were altered during

learning, these changes are likely reflective of an unsupervised learning process that serves

to decorrelate the odor ensembles of familiar odors. This is because we observe the same

changes to occur in the piriform even when odors were passively presented without reward

pairing over multiple days of imaging. What mechanism underlies unsupervised pattern

separation within the piriform? Prior work has observed that mitral cells within the olfac-

tory bulb also undergo pattern separation (Chu et al. 2016). Moreover, such enhancement

of odor-evoked responses occur independent of any active learning process, as passive odor

exposure over multiple days also leads to increased separability of distinct odor ensembles.

Therefore, it is possible that the increase in discriminability that we have observed in the

piriform is relayed by changes in glomerular activity upstream. Moreover, piriform neu-

rons are also intricately connected through a network of recurrent excitatory and inhibitory

synapses that may actively shape olfactory representations (Haberly and Price 1978; John-

son et al. 2000). Previous work have found that principal neurons project extensively across

the entirety of the piriform to synapse onto other principal neurons and inhibitory cells, and

these synapses serve to dynamically boost or inhibit the spiking of other principal neurons

in response to glomerular activation (Franks et al. 2011). This study estimates that each

piriform neuron may receive inputs from at least 2000 other piriform neurons. Such an
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extensive recurrent network may shape the ensembles of odor-responsive neurons in an

unsupervised manner during repeated odor exposure.

Multiple groups have shown that activity within the posterior piriform cortex may be

critically required for olfactory associative learning, in particular learned olfactory fear

(Sacco and Sacchetti 2010, Gore et al., unpublished data). Moreover, the exogenous photo-

activation of an arbitrarily chosen ensemble of piriform neurons can be entrained to elicit

either appetitive or aversive behavioral responses through temporal pairing with rewards

or punishments, respectively (Choi et al. 2011). Therefore, the piriform is both necessary

and sufficient for olfactory learning. We have currently shown that the majority of odor-

evoked responses in the piriform were preserved during learning, and the changes that do

occur are unsupervised in nature and therefore unrelated to associational learning. There-

fore, learning must impose changes in neural activity in downstream associative regions.

The piriform sends dense projections to multiple associational areas such as the basolateral

amygdala, the orbitofrontal cortex (OFC), and the hippocampus. We first imaged learning-

dependent changes in the OFC.
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Figure 2.1
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Figure 2.1. Mice Display Robust and Selective Anticipatory Licking to CS+ odors.
A. Licking responses to two CS+ and two CS- odors across 4 dseparate imaging sessions.
Imaging was performed every other day. Days are separated by a gray line. Odor is pre-
sented for two seconds during the colored interval, and after a trace period of 2.5 seconds,
water is given for CS+ odors while no reward is given for CS- odors. Licking is denoted by
a black bar. 12 - 15 trials of each odor was given per day of imaging. This particular mouse
learned within two days of training. B.Number of anticipatory licks for each mouse (n = 5).
Each blue line denotes the number of anticipatory licks to CS+ odors for one mouse, and
red denotes average number of licks to CS- odors. Traces were averaged by odors and also
averaged across trials in a smoothing window of 5 trials. C. Learning rate was quantified
using number of trials for anticipatory licking to reach half-maximum. The learning rate
for mice with lenses implanted in the piriform, OFC, and BLA was compared. D. Percent-
age of trials with any anticipatory licking for CS+ and CS- odors. Each line the average
percentage for two CS+ odors (left) and two CS- (right) odors for each mouse.
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Figure 2.2
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Figure 2.2. Piriform responses to odors are typically robust, selective, and have onsets
at odor delivery. Responses of 4 example cells to odors. Each cell is selective to a different
odor. MSY, methyl salicylate; PIN, pinene; LIM, limonene; 2PE, 2-phenylethanol.
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Figure 2.3
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Figure 2.3. Piriform responses occur at odor onset and are consistent across trials.
A. Responses to 4MT (4-methylthiazole) in an example piriform neuron for all trials across
three days of training. The series of three tickmarks on x axis denote odor onset, odor offset,
and water onset. PIN and MSY are CS+ odors, 4MT and LIM are CS- odors. Y axis denote
different days of imaging. Red denotes a positive DF/F, with saturation at 100% DF/F.
B. Most odor responses display low trial-to-trial variability. The coefficient of variation
(CV) was calculated for each time point between odor on and water on, and the maximum
CV during this time was taken as an measurement of variability. CV values are shown for
all significant odor responses. C. Most odor evoked responses onset immediately at odor-
delivery. Only CS+ odors were counted to warrant a fair comparison with OFC and BLA
behavior data later on.
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Figure 2.4
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Figure 2.4. Population PSTH of Piriform Responses to Odors and US. Piriform re-
sponses in an example mouse. Each row denotes a single cell’s trial-averaged responses
to PIN, MSY, LIM, 2PE, and water. Scale bars indicate an increase in DF/F (red) or a de-
crease in DF/F (blue) relative to baseline. Odor-evoked ensembles of different odors share
low overlap. Low activation to US was observed.
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Figure 2.5
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Figure 2.5. Piriform Responses Appear Largely Stable During Learning. A. Odor-
evoked responses are shown for before learning (session 1, left side of each pane) and after
learning (session 3, right side of each pane) for each odor. Responses are sorted based on
maximal odor activation on last training day for each odor, and neurons are aligned across
learning. While changes occur, most odor-evoked responses are stable across learning.
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Figure 2.6
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Figure 2.6. Odor-evokedEnsembles Experience Slight Increases in Size and Selectivity
After Learning. A. On average, 13% of neurons are activated by a given odor after learning
as compared to 11%before learning (left). Minimal response to US is observed either before
or after learning (right). B and C. Fraction of neurons responsive to a given number of
odors out of a total of 4 delivered odors. More neurons are response to odors after learning
as compared to before learning.

46



Figure 2.7
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Figure 2.7. Odor-evokedEnsembles Experience Slight Increases in Size and Selectivity
After Learning. A. Left and Middle: fraction of CS+ and CS- responses that significantly
decreased (left) or increased (middle) in amplitude during learning. Right: fraction of neu-
rons that acquired new responses to a CS+ or CS- odor during learning B. Left: fraction of
overlap between ensembles ofping neurons between CS+ odors, CS- odors, and between
all CS+ and CS- odor pairs before and after learning. Right: pooled average ensembles of
fraction overlaps between pairs of odor ensembles before and after learning C. Ensemble
size as a function of learning across days. Ensemble size slightly increased duringincreases
as a function of learning.
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Figure 2.8
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Figure 2.8. Odor Identities Can be Decoded from Piriform Neurons Across Many
Days of Learning. Green: decoding performance between two CS+ odors (green) or two
CS- odors (red). More errors were made in classifying the identities of CS+ odors when
trained on pre-learning trials and tested post-learning (D1:D4) and vice versa (D4:D1). Per-
formance became better for all conditions post-learning (D4:D4) compared to pre-learning
(D1:D1), suggesting that representations are more separable post-learning.
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Figure 2.9
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Figure 2.9. Repeated odor exposure drives similar changes in piriform representations
as during odor learning PT1 A. 12% of neurons are activated by a given odor before and
after passive odor exposure. B and C. Fraction of neurons responsive to a given number
of odors out of a total of 4 delivered odors. Neurons are slightly more odor selective after
repeated odor exposure. More neurons are responsive to 1 or 2 of 4 presented odors as
compared to 3 or all of the presented odors after repeated exposure.
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Figure 2.10
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Figure 2.10. Repeated odor exposure drives similar changes in piriform representa-
tions as during odor learning PT2 A. Similar fractions of neurons undergone changes
during passive odor exposure as compared to odor learning. B. Overlap between any two
odor ensembles also decreased after repeatedly odor exposure.
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Chapter 3

The Orbitofrontal Cortex

3.1 The Orbitofrontal Cortex

The piriform sends both direct and indirect connections onto the OFC. The OFC has been

intensely studied over the past 50 years, and many lesion studies have shown that it plays

an important role for the learning of cognitively demanding tasks (Stalnaker et al. 2015).

However, it has been difficult to distill a cognitive operation that is common to all of the

observed behavioral deficits. Moreover, the myriad of neural recording studies in the OFC

has shown that virtually any experimental variable can be represented by the firing of its

neurons. The lack of consensus on its function has prompted reviews to be written on what

it does not do rather than what it does do during learning (Stalnaker et al. 2015). I will start

with a concise summary of OFC recording and lesion experiments and then describe a set

of experiments that elucidates OFC function.

Anatomy

In rats and other rodents, the agranular parts of the prefrontal cortex is divided into medial

orbital (MO), infralimbic (IL), prelimbic (PL), agranular insula (AI), ventrolateral orbital

(VLO) and lateral orbital (LO) areas (Figure: 3.1). All orbitofrontal sections (MO, VLO,
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LO) receives inputs from all sensory modalities and also from the striatum, amygdala, hip-

pocampus, and other frontal and prefrontal areas amongst other areas. The LO and the

VLO, in particular, appears to receive more connections from sensory areas compared to

the more medial sections of the orbitofrontal network (Kahnt et al. 2012). The piriform

cortex sends direct projections onto the VLO and the LO (Johnson et al. 2000), and indirect

projections through the mediodorsal thalamus onto these areas (Groenewegen 1988). In

primates, the piriform cortex also projects most densely to the VLO of all prefrontal struc-

tures (Morecraft et al. 1992). Given these projection patterns, I will refer to VLO and LO

as the OFC for the remainder of this thesis.

OFC Computes Predicted Value

Humans with OFC damage have often led to changes in personality (Galleguillos et al.

2011; Cicerone and Tanenbaum 1997). These changes are also observed in studies of non-

human primates, where OFC lesions often result in changes in aggressive behaviors (Butter

et al. 1970; Raleigh et al. 1979; Beyer et al. 2014) and in emotional and social processes

(Ishai 2007; Perry et al. 2016; Azzi et al. 2012; Izquierdo et al. 2005; Bechara et al. 2000).

In addition, other studies have shown that OFC may also play roles both in working and in

long-term memory (Frey and Petrides 2002; Meunier et al. 1997; Barbey et al. 2011).

One potential explanation of why the OFC underlies such a multitude of behavioral

deficits is that the OFC computes predicted value. All of the tasks mentioned above re-

quire the subject to make informed decisions, and the value of each possible action must

be computed for the subject to decide on an optimal action in a given state. Therefore,
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impairing a system that computes value would cause widespread changes in the ability to

make appropriate decisions in social, emotional, and cognitive tasks.

The theory that OFC encodes value is rooted in early primate OFC recordings (Padoa-

Schioppa and Assad 2006; Tremblay and Schultz 1999). In these papers, the OFC was

found to encode a general value representation that is independent of the sensory or motor

features of the cue. This finding has been supported by a number of studies in rodents,

monkeys, and humans (Thorpe et al. 1983; Gottfried et al. 2003; Schoenbaum et al. 1998).

For example, in one study (Padoa-Schioppa and Assad 2006), OFC activity was recorded

in monkeys while they chose between two different juice rewards. Visual cues conveyed

the amount of juice that was offered to the monkey, and the monkey is able to choose which

of the two options it preferred. The authors found that activity in a subset of OFC neurons

encoded the value of the chosen juice regardless of the juice being chosen. In other studies,

OFC activity was recordedwhen reward contingencies were switched such that a previously

unrewarded cue (CS-) became rewarded, and a previously rewarded cue (CS+) became

unrewarded (Thorpe et al. 1983; Roesch et al. 2007). During reversal learning, a significant

percentage of OFC neurons was found to track reward outcome and not the sensory features

of the cue itself. Moreover, internal state such as hunger and satietymodulates the responses

of most OFC neurons to sensory cues predicting a food reward (Critchley and Rolls 1996).

Based on these studies, the OFC indeed appears to create an abstraction of value that is

appropriately sensitive to changes in outcome, context, and internal state.

The results of such electrophysiological studies suggest that OFCmay play a crucial role

during associative learning. Indeed, OFC lesions have generated behavioral deficits that are

subtle and complex in a variety of cognitive learning tasks. Perhaps the most well-studied
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has been reversal learning (Schoenbaum et al. 2002; Jones and Mishkin 1972; Meunier et

al. 1997; Chudasama and Robbins 2003). If the computation of value is disrupted, subjects

will be unable to update the value of new cue-outcome associations and therefore will be

impaired in reversal learning. Indeed, OFC-lesioned animals take a significantly longer

amount of time to outcome reversal (Schoenbaum et al. 2002; Chudasama and Robbins

2003; Izquierdo et al. 2004).

Moreover, OFC lesions also impair performance in delayed alternation tasks. In this

task, subjects make a decision to choose between two cues. The cue that predicts reward

alternates between different trials. Therefore, if subjects were unable to learn that alterna-

tion was the optimal strategy, they would not be able to receive reward in this task. Indeed,

while control animals learn this task with ease, monkeys with OFC lesions fail to perform

better than chance even after prolonged training (Mishkin and Manning 1978).

Lastly, OFC also affects performance in reinforcer devaluation tasks. In these tasks,

animals first learn to associate a cue with a reward. The reward is then devalued outside

the conditioning context by pairing the consumption of the outcome with a bitter substance

for instance. After reward devaluation, cue presentation to a normal subject results in a

decrease in relative preference to the devalued reward. However, OFC-lesioned subjects

respond with equal vigor to cues both before and after reward devaluation, suggesting that

was a failure to update the value of the cue during devaluation (Gallagher et al. 1999; Pick-

ens et al. 2003; Izquierdo et al. 2004).
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Caveats and Alternative Hypothesis

While the results of many electrophysiological and lesion studies support OFC’s role in

computing value, there are many important subtleties and caveats. For instance, while

many studies have observed a reversal learning deficit from lesioning the OFC, the deficit

only appears during the first reversal but not during subsequent reversals (Schoenbaum et

al. 2002; Boulougouris et al. 2007). Moreover, in delayed alternation tasks, it appears that

lesioning the OFC only influences task performance if a delay was introduced, suggesting

that the OFC lesion does not impair value learning but rather the formation of working

memory (Miller and Orbach 1972). Finally, probably the most glaring critique against

OFC’s role of computing value is that OFC-lesioned subjects are not impaired during initial

value acquisition (Chudasama et al. 2007; Izquierdo et al. 2004; West et al. 2011). In these

experiments, while the OFC was necessary for reversal learning, OFC lesions had no effect

on initial discrimination learning; while the OFCwas necessary for behavioral changes after

devaluation, OFC lesions had no effect during simple associative conditioning. Therefore,

in every classic paradigm, there are subtle but important caveats against the interpretation

of OFC encoding general value.

The electrophysiological data is also nuanced. While there are certainly a significant

subset of OFC neurons that track value, this subset of neurons appear to exist among a

much more diverse population tuned for a variety of other variables. In rodent and primate

studies, OFC neurons are found to be tuned to features such as stimulus identity, stimulus

match-nonmatch comparisons, and stimulus location (Schoenbaum and Eichenbaum 1995;

Ramus and Eichenbaum 2000; Lipton et al. 1999). OFC neurons also display a working
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memory component and are influenced by prior contextual cues and whether rewards were

given on preceding trials (Simmons and Richmond 2008; Saez et al. 2015). Moreover,

while subsets of neurons appear to encode general value, many others are tuned to outcome

identity and outcome location (Lipton et al. 1999; Padoa-Schioppa and Assad 2006; Feier-

stein et al. 2006). Some studies have also revealed that OFC even encodes motor responses

in goal-directed learning tasks (Feierstein et al. 2006; Roesch et al. 2006) and confidence

signals (Lak et al. 2014; Kepecs et al. 2008). Moreover, selectivity to one variable does not

appear to predict responses to other variables, suggesting that OFC neurons exhibit mixed

selectivity to any combination of task-relevant variables (Kennerley et al. 2011).

In summary, OFC neurons appears to be tuned not just to value but to a mixture of

all relevant task variables. Moreover, the hypothesis that OFC computes value does not

appear to account for all the subtleties apparent in many lesion studies. One alternative

hypothesis of OFC function that attempts to take into account the complexity of recording

and behavior data is that the OFC encodes task state. State, as defined in reinforcement

learning, is a position in an abstract task map (Wilson et al. 2014). The complexity of the

state representation depends upon the complexity of the task. In a classical conditioning

task in which a single odor predicts reward, the states are as simple as ”odor present” or

”odor not present”. However, if a task is complex and requires working memory, such

as the identity of cues presented on previous trials, then the state representation would

encapsulate all such factors relevant towards the obtainment of reward, with the predicted

value of a sensory stimulus being one of many contributing factors. Therefore, this theory

offers an explanation of why the encoding of all relevant task variables appears within the

OFC. However, the notion of state is abstract and difficult to define operationally, and it
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offers little testable hypothesis or constraints on how task variables should be encoded to

generate a representation of state.

Aim

Progress in elucidating OFC function has been limited by several factors. A potential source

of confusion in almost all primate electrophysiology and lesion studies is that experimental

subjects have already been well-trained on the current task prior to recording and lesion

(for example, Thorpe et al. 1983; Mishkin and Manning 1978; Meunier et al. 1997). In

particular, given the expensive nature of using monkeys as a model species, almost all

experimental subjects have also been trained and tested on prior related tasks. Therefore,

behavioral data extracted from lesion studies may be confounded by past learning in similar

tasks, and recording data may also not only reflect current task variables, but also what

the subject has previously learned. Similarly, in freely moving rodent studies, subjects

are ”pre-trained” to be familiar with the task structure prior to recordings and prior to the

assessment of deficits due to OFC lesion (for example, Schoenbaum and Eichenbaum 1995;

Schoenbaum et al. 1998; Schoenbaum et al. 2002). The idea that different brain areas are

responsible during different phases of learning has steadily gained experimental support

(Jin et al. 2016; Roy et al. 2017; Kitamura et al. 2017). Therefore, if the OFC plays a

crucial role during the acquisition phase of learning, this deficit would not be revealed by

prior experiments that assess OFC function after animals have successfully acquired the

task structure during pre-training. Therefore, OFC function should be assayed both during

early and late phases of learning.
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Understanding what OFC encodes is also severely limited by a lack of tools that al-

lows for neural activity to be tracked in population of neurons during learning. In previous

studies, it is unclear if responses to sensory cues, motor actions, working memory, and out-

comewere present prior to learning or if theywere acquired during task learning. Therefore,

tracking neural activity across time may distill the important variables that are potentiated

during learning from background noise present throughout the entire task.

We sought out to understand what the OFC encodes by first tracking its neural activity

during learning. We employed the same head-fixed, appetitive olfactory learning task as

described in Chapter 2 and again used 2-photon endoscopic imaging to track activity in

populations of OFC neurons. Imaging experiments reveal that odor representations in the

OFC prior to learning are sparse and non-selective. However, after training over 30% of

OFC neurons acquire robust responses to conditioned odors (CS+). Moreover, multiple

and distinct CS+ odors activate the same population of OFC neurons. Furthermore, these

responses are gated by context and internal state. We then explicitly asked whether piriform

activity is sufficient to drive CS+ responses in the OFC by activating a random subset of

piriform neurons that has been decorated with a red-shifted channelrhodopsin (ChrimsonR)

while simultaneously imaging OFC activity (Klapoetke et al. 2014). We found that laser

activation of this ensemble drove potentiated responses in the same set of OFC neurons

as those activated by CS+ odors. Therefore, our data suggests that the representation of

odor identity in the piriform is transformed by the convergence of sensory and cognitive

information to create representations of predicted value in the OFC.

We then examined the functional role of the OFC in associative learning tasks. We di-

vided our appetitive learning task into two epochs: pre-training, during which mice learn
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that a single odor predicts water, and discrimination training, during which mice learn

to distinguish between novel CS+ and CS- odors. Optogenetic silencing of OFC during

pre-training results in a significant impairment in the learning of simple odor associations,

whereas silencing of OFC during discrimination does not impair the learning of new asso-

ciations. Imaging during these two epochs of the task reveals that the representation of the

pre-training odor begins to decay when the animal has learned the appetitive task, and new

CS+ odors are not represented as robustly during discrimination. Therefore, these results

suggest that the OFC is necessary for task acquisition, but subsequent discrimination must

be accommodated by other brain regions.

3.2 Results

OFC Discards Sensory Identity to Encode Predicted Value

As detailed in Chapter 1, we again implantedmicroendoscopes above the OFC of transgenic

GCaMP6S mice (VGLUT2-ires-Cre X rosa-FLEX-GCaMP6S) and imaged population re-

sponses during the same head-fixed olfactory appetitive learning task (Vong et al. 2011;

Madisen et al. 2015). We were able to track an average of 70 OFC neurons per animal

across multiple training days, sometimes up to 15 days. CS+, CS-, and US responses were

imaged before, during, and after learning.

Prior to learning, 15-20% of neurons were responsive to any given odor (Figure 3.2.A).

However, these responses were unlike those observed in the piriform cortex. Whereas odors

evoked piriform responses that were selective, consistent and high in amplitude, naive odor
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responses in the OFCwere inconsistent, low in amplitude, and non-selective to all odors. As

a consequence, a binary linear decoder trained to decode odor identity in the OFC performed

at near chance level for all pairs of odors, suggesting that odor identity is represented far

weaker in the OFC than in the piriform (Figure 3.3.A). OFC neurons were responsive to the

unconditioned stimulus, as water evoked significant excitation in 25% of imaged neurons

(Figure 3.5.B).

Odor-evoked responses in the OFC dramatically changed as a result of learning. During

the course of training, responses to CS+ odors gradually potentiated, and after mice have

fully learned to lick in anticipation to CS+ odors in greater than 90% of trials, this poten-

tiation matured into robust and consistent responses in 35% of OFC neurons (Figure 3.4,

3.2.B, 3.5.A). In contrast, there was little to no change in the activity to CS- odors during

learning (Figure 3.5.A).

A defining feature of this representation is that most neurons exhibit identical or ex-

tremely similar responses to different CS+ odors in terms of onset, amplitude, and duration

(Figure 3.4, 3.2.B). To quantify this observation, we first thresholded statistically signifi-

cant responses and observed that the two CS+ odor ensembles shared high (70%, see Meth-

ods for overlap quantification) overlap after learning (Figure 3.6.A). However, the level of

overlap is not near 100%, and this could suggest that either a low but significant proportion

of CS+ responsive neurons encode the identities of distinct CS+ neurons, or that neurons

classified as responsive to 1 CS+ odor are noisy and unreliable. If the former were true,

then a linear decoder could use this population of identity-encoding neurons to decode the

identities of the two CS+ odors. We trained a linear decoder on a subset of CS+1 and CS+2

odor trials, and found that odor identities of CS+ odors could not be reliably decoded when
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tested on held-out trials (30% error rate) (Figure 3.3.B). Therefore, neurons that were clas-

sified as responsive to only one of two CS+ odors had weak and unreliable responses to that

odor and thus did not aid in the decoding of odor identity. In addition, we also found that

the identities of the CS- odors could not be decoded either before or after learning (Figure

3.3.B). Therefore, we conclude that the OFC does not encode sensory identity. The decoder

could only accurate decode the identities between a CS+ odor and a CS- odor after learning,

suggesting that the only quantity that is encoded within the OFC is predicted value (Figure

3.3.B).

Moreover, CS+ responses were temporally heterogeneous and had different waveforms,

durations, and onset times (Figure 3.4, 3.2.B). In particular, we observe that less than half

of all CS+ responses occur immediately at odor onset, and the rest tile the duration between

odor onset and water onset (Figure 3.7.A). The diversity of temporal dynamics suggest that

the OFC may be encoding time-sensitive events. However, if the underlying variability in

the response dynamics to CS+ odors is very high, then downstream areas cannot decode it

from OFC activity. Indeed, the OFC exhibits greater trial-to-trial variability than piriform

responses (Figure 3.7.B). Preliminary analysis reveals that the OFC can indeed decode time

better than other imaged brain regions that do not exhibit onset tiling, such as the BLA

(analysis not shown).

Is having a US response predictive of the acquisition of a CS+ response during learning?

In a simple model, the co-activation of sensory and US inputs will strengthen the connection

weights of sensory inputs in a way that is suggestive of Hebbian learning(LeDoux 2000).

Therefore, we would observe that US-responsive neurons would acquire CS+ responses,

and neurons that are unresponsive to US will not acquire CS+ responses. We observe that
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while it is more likely for a US-responsive neuron to acquire a CS+ response during learn-

ing as compared to chance, it does not occur with certainty (60% US responsive neurons

acquire CS+ responses vs 35% from a random shuffling of CS+ and US responses) (Figure

3.6.B). Moreover, the number of US-responsive neurons is less than the number of CS+ re-

sponsive neurons (25% US-responsive vs 35% CS+ responsive), implying that many CS+

responsive responses were acquired by neurons that were unresponsive to the US (40% of

CS+ neurons are US-responsive). Therefore the majority of CS+ responsive neurons were

not US responsive (Figure 3.6.B). These results suggest that that CS+ responses in the OFC

potentiate through mechanisms that cannot be explained by a simple Hebbian model.

We further assessed the consistency of odor-evoked responses across different days after

mice have fully learned the task. We tracked neural activity across days and analyzed over-

lap in the CS+ responsive populations on consecutive imaging days. We found that 65%

of OFC responses to CS+ were retained across consecutive imaging days, which is a lower

fraction when compared to piriform responses across days (Figure 3.8). This lower con-

sistency can be attributed to the observation that a significant proportion of CS+ responses

decay after learning performance plateaus, a statistic that we will analyze in depth later on.

Both CS- and US responses were less consistent compared to CS+ responses across days

(40% for CS-, 40% for US). Therefore, responses to CS+ were the only responses that were

consistently maintained across days.

Prior literature has also suggested that the OFC encodes motor action (Feierstein et

al. 2006; Roesch et al. 2006). However, several lines of evidence suggest that there is

minimal encoding of motor action within OFC activity in our appetitive conditioning task.

First, if OFC neurons drive or encode motor action, neural activity should have a close
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correlation with licking events. If strong responses are observed within CS+ trials, they

should also be present during US-only trials since mice are licking for water in mice trial

conditions. However, the majority of neurons (60%) that respond significantly to the CS+

do not respond to the US in US-only trials (Figure 3.2.B, 3.6.A). Second, if motor action

was encoded in the OFC, population activity in trials where mice fail to display anticipatory

licking to CS+ odors after learning should be similar to trials where mice withheld licking

in CS- odor trials. However, non-lick CS+ odor trials were nearly always categorized as

lick CS+ odor trials (26/30) rather than non-lick CS- odor trials, suggesting that the OFC

encodes predicted value after learning irrespective of motor action (Figure 3.9). Finally,

in a preliminary experiment, we entrained mice to lick left or to lick right in response to

specific odors. We found that the representations of odors were similar between the odor

signaling lick-left and the other signaling lick-right. All of these results suggest that motor

action is unlikely to be encoded in the OFC.

OFC is Sensitive to Internal State, External Context, and Changes in

Outcome

We have shown so far that the OFC responses discard sensory identity and appear to encode

the value of the CS+ cues during task learning. If the OFC indeed encodes expected value

of the odor stimuli, neural responses to odors should change when the value predicted by

a learned odor also changes. We thus tested the hypothesis of value encoding by imaging

OFC activity when the values of CS+ and CS- cues reverse during reversal learning. Mice

were first trained on the same odor discrimination task, and once learned, cue reward con-

67



tingencies were reversed. During reversal learning, mice suppress anticipatory licking to

the ‘old’ CS+ odors and learn to display anticipatory licking to the ‘new’ CS+ odors. Mice

rapidly learn to reversal their behavioral responses, as both extinction and new licking take

an average of 2 days or 30 trials of odor delivery per odor to for mice to complete.

Consistent with value encoding, the majority of neurons lost responses to the old CS+

and acquired responses to the new CS+ odors (Figure 3.10.A). We define odors A and B

to be the old CS+ (or new CS-) odors, and odors C and D to be the old CS- (or new CS+)

odors. We note that after reversal, responses to A and B did not fully subside but were

significantly weaker in amplitude than responses to C and D. Therefore, counting respon-

sive neurons by using only statistical significance without factoring in response amplitude

would severely exaggerate the number of responses to AB after reversal. To use a metric

that reflected the changes we observed, we counted neurons that not only had statistically

significant responses, but also had a DF/F that was higher to AB than CD, and vice versa.

Using this metric, we observe that most CS+ responsive neurons (55%) fully reversed their

representation during reversal learning, or in other words, they have lost responses to AB

and have gained responses to CD. The rest underwent partial reversal; 30% of neurons

gained a response to CD during reversal when previously unresponsive to AB, and a fi-

nal 15% lost responses to AB during reversal and did not gain responses to CD (Figure

3.10.C). On a population level, while 30% of neurons respond to AB more than CD after

discrimination training, only 5% do so after reversal training. Conversely, while only 5%

of neurons respond to CD after discrimination learning, 30% do so after reversal learning

(Figure 3.10.B). Therefore, taken together, these results suggest that OFC responses adapt

to changes in expected value.
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We further manipulated the expected value of the CS odors by first satiating mice with

water after they have learned discrimination training. Prior experiments have shown that

significant subsets of OFC responses are modulated by state (Critchley and Rolls 1996).

We first imaged OFC responses to odors when mice are well-trained and then sated them

by delivering on average 2 mL of water in 10 minutes. After satiation, mice neither dis-

play anticipatory licking to odors nor do they collect the water once it is delivered, and we

imaged OFC responses to odors during this period. We found that CS+ responses either

completely vanish or were significantly attenuated after satiation (Figure 3.11.A). To quan-

tify this change, we compared the evoked responses of all CS+ responsive neurons pre-

and post-satiation, and observed a nearly complete suppression of CS+ responses (Figure

3.11.A).We alsomanipulated expected value by removing the water port after themice have

successfully completed discrimination learning. Upon removal of the water port, video

recordings reveal that mice suppress anticipatory licking to the CS+ odors within 2-3 odor

presentations (Figure 3.11.B). Similar to satiation, CS+ responses of nearly all OFC neu-

rons either completely vanished or were significantly attenuated after water port removal

(Figure 3.11.B).

In summary, during the manipulation of internal state, context, and changes in outcome,

we did not observe subsets of OFC neurons encoding other factors such as sensory identity,

motor actions or other task parameters. Instead, we found that nearly all OFC neurons

updated their responses in a way that is consistent with a representation of expected value.

69



Entrainment of Piriform Neurons is Sufficient to Evoke CS+

Representation in OFC

We then asked whether the piriform alone is sufficient to drive value responses in the OFC

by assessing whether entrainment of a random piriform ensemble drives potentiated CS+

responses in the same set of OFC neurons as odor entrainment. This was done in one

mouse as a proof-of-concept experiment. We used an AAV virus to decorate a random piri-

form ensemble with a red-shifted rhodopsin (ReachR) whose activation wavelength is non-

overlapping to the excitation and emission spectra of GCaMP6 (ChrimsonR-TdTomato)

(Lin et al. 2013). We then paired the light activation of the ChrimsonR-expressing piriform

ensemble with water reward while simultaneously imaging the evoked representation in the

OFC during behavioral training. These laser-paired trials were alternated with CS+ odor

and CS- odor trials. Mice, on average, took 2-3 times longer to learn to lick in response to

light as compared to odor (80 trials for laser vs 25 trials for odor). However, once learned,

the CS+ representation to laser was nearly identical to that evoked by CS+ odors (Figure

3.12). This experiment demonstrates that odor activation in the piriform is sufficient to

drive the CS+ responses observed in the OFC, delineating a circuit whereby sensory iden-

tity in the piriform is transformed by the convergence of sensory and cognitive information

to create a representation of expected value of the CS cues in the OFC.

OFC Is Necessary for Acquisition but not Expression of Learning

We have so far shown that the OFC encodes expected value and is sensitive to internal

state, external context, and updates in outcome. However, does this representation of value
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play a role during associative learning? To test this, we bilaterally silenced the OFC during

discrimination learning using a red-shifted halorhodopsin, Jaws (Chuong et al. 2014). We

chose Jaws because it provides an activation wavelength that is non-overlapping to the

excitation and emission spectra of GCaMP6s, and therefore can allow simultaneous calcium

imaging and optogenetic perturbation. Reliable inhibition was observed in >85% neurons

using a 32-channel extracellular optrode array with an activation wavelength towards the

tail end of Jaws’ excitation spectrum (660 nm light, 10 mW output at fiber end) (Figure

3.13). A lens was also inserted on top of the BLA in these mice for simultaneous imaging,

the results of which we will discuss in later chapters.

In this experiment, the induction of laser activation flanked odor delivery and water

delivery, turning on 2 seconds prior to odor and turning off 2 seconds after water delivery.

The same activation time was also used for CS- odors despite the lack of water delivery.

The task structure of discrimination training remained the same as otherwise. We found

that OFC silencing caused a profound learning deficit. While normal mice learn to lick in

anticipation to CS+ odors within 2-3 days of training (12-15 presentations of each odor per

day), inhibited mice failed to display robust anticipatory licking to CS+ odors even after 10

days of training (Figure 3.14). Collection licks after US delivery was unaffected in these

mice, implying that inhibition did not impair the motivation to acquire water nor execution

of motor actions in thirsty mice. OFC silencing also had no effect on suppression of licking

to CS- odors. Therefore, the deficit observed during OFC silencing appears to only affect

licking to CS+ odors but not in discriminating between CS+ and CS- odors. Our imaging

results also support this interpretation, since the OFC does not significantly encode CS-

odors either before or after learning.
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We observed variability in our behavioral results. 3 of 5 mice did not learn the task

after 10 days of training, and only initiated anticipatory licking in less than 30% of CS+

odor trials on day 10 of training (Figure 3.15). The rest learned within a normal number

of trials relative to controls. We assessed fiber placement and virus infection post-fixation

and found no observable defects in either parameter in these mice. Therefore, our inhibition

results suggest that the OFC may be necessary for associative learning for some mice but

not others.

These results runs counter to the corpus of literature claiming that the OFC does not im-

pair either classical or operant associative conditioning. While in our task, discrimination

training commenced without any form of prior odor training, others first “pre-train” animals

to learn a simple association before discrimination training (Schoenbaum and Eichenbaum

1995; Schoenbaum et al. 1998; Schoenbaum et al. 2002). To the best of our knowledge, af-

ter the OFC is lesioned, deficits during pre-training were never assayed nor described, and

only a lack of deficit during the ensuing discrimination training was reported. Therefore,

we wondered whether the difference between our results and those that were previously

published were due to the installment of a pre-training epoch prior to discrimination train-

ing.

We therefore implemented a head-fixed version of pre-training. Instead of presenting

4 different odors (2 CS+, 2 CS- odors), a single CS+ odor was paired with water delivery,

and this was repeated for 30-50 trials in daily imaging sessions. As before, the red-shifted

halorhodopsin Jaws was used to bilterally silence the OFC. We found that OFC inhibition

impaired the acquisition of anticipatory licking by two-fold on average during pre-training

(Figure 3.16). Control YFP mice learned this task in 50 CS+ trials over the span of two
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days, with the slowest mouse learning in 70 trials. In contrast, 4 of 6 mice with bilaterally

inhibited OFC learned this task in over 100 trials, whereas the other two mice learned as

quickly as control mice (Figure 3.17). Therefore, just as before, the OFC is necessary for

the acquisition of associative learning in a majority of mice. We also note silencing during

pre-training resulted in a deficit that was less severe than silencing during discrimination

training without any prior pre-training, as mentioned above (2-fold increase in learning time

in pre-training vs. complete failure to learn during discrimination training).

Previous experiments only assayed discrimination learning after mice have undergone

pre-training and have observed no deficit in discrimination learning. These results have

been used to conclude that OFC does not play a role during associational learning. However,

in our two sets of perturbation experiments, one inhibiting the OFC during pre-training and

the other during discrimination learning without any prior pre-training, we observe that

the OFC is necessary for the formation of learned associations. If our results and those of

others both hold, then we suggest that the OFC is only important for learning task structure,

and is dispensable for the learning of subsequent associations within the same task. We

thus asked whether we can replicate the results of prior experiments by silencing the OFC

during discrimination learning after mice have undergone pre-training.

In the first set of experiments, we pre-trained mice with an intact OFC and inhibited

the OFC during discrimination training. We used the same pre-training and discrimination

parameters as before, and silencingwas again done using Jaws. Discrimination training pro-

ceeded only after mice have successfully learned pre-training (anticipatory licking in >90%

of trials). The learning strategy was different for discrimination learning when preceded by

pre-training. Instead of learning to lick to CS+ odors if there was no prior pre-training, con-
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trol mice generalize what they have learned during pre-training by licking in anticipation

to all odors at the start of discrimination training (Figure 3.18.A). They then rapidly adapt

their behavioral strategy to suppress licking to CS- odors, with full suppression occurring

in an average of 10 trials. Therefore, selective anticipatory licking to CS+ odors during dis-

crimination training was rapid and often occured within a day of training (Figure 3.18.B).

We observed no deficit in OFC inhibition during discrimination training after pre-training

(Figure 3.18.A). Inhibited mice also learn to generalize licking to all odors at the start of

discrimination and no deficit was observed for suppression to CS- odors. This result im-

plies that once a simple association has been learned with an intact OFC, the OFC is not

required for the learning of subsequent associations.

In the second set of experiments, we matched the experimental protocol of prior ex-

periments by inhibiting the OFC during both pre-training and discrimination epochs. In

agreement with previously published results, we again observed no deficit in OFC inhi-

bition. Mice again generalized anticipatory licking for all odors and quickly learned to

suppress to CS- odors (Figure 3.18). Together, these sets of results suggest that no matter if

a simple association is learned with or without an intact OFC, the OFC is not required past

the point of initial task acquisition.

We further replicated these sets of findings with a freely moving behavioral paradigm.

In this task, mice were free to move within a behavioral apparatus. Trials were initiated

with a nose poke into a nose port located at one end of the box, and odor was then delivered

inside the nose poke port after a successful nose poke. Water was then given for CS+

odors through a lick port situated directly underneath the odor port. Each mouse was left

within the behavioral apparatus for an hour and were able to initiate trials freely during
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this period. Motivated mice initiated an average of 100-200 trials in this 1 hour period.

We found that OFC inhibition during pre-training significantly impaired the ability to learn

this task (Figure 3.19). Most experimental mice were unable to initiate trials even after

5 days of training whereas control mice learned the task structure within three days, and

initiated an average of 200 trials on the 5th day with robust anticipatory licking. When

OFC inhibition was released in mice that failed to learn pre-training, these mice were able

to learn to initiate trials and displayed normal anticipatory licking to the pre-training CS+

odor. Therefore, similar to head-fixed inhibition results, OFC inhibition during the freely

moving task also prevented mice from acquiring task structure.

Once mice learned pre-training, they then underwent discrimination training, which

consisted of discriminating between one CS+ odor and one CS- odor. The majority of

mice again generalized anticipatory licking to both odors and rapidly suppressed licking to

CS- odors (Figure 3.19). Again, we silenced the OFC during discrimination training either

after mice learn pre-training with an intact OFC or with an inhibited OFC. We observed

no behavioral deficit in discrimination learning in either experiments. Therefore, results

from freely moving experiments were similar to head-fixed experiments. OFC appears to

be strictly necessary for task acquisition.

OFC Activity Peaks During Initial Learning and Decays After

Learning Plateaus

Our silencing experiments reveal that the OFC appears to be important during the early

stages of associative learning. This is presumably reflected by the robust CS+ representa-
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tion that is observed by imaging the OFC during learning. By that logic, the lack of deficit

observed when silencing during the learning of subsequent associations implies that the

OFC may be inactive and unresponsive to CS+ odors after initial learning. Therefore, we

would predict that the OFC should not be engaged during discrimination learning after pre-

training. Initial imaging results suggested that OFC responses may decay after learning has

plateaued, but neural responses were not tracked for long periods of time so no definitive

conclusions could be reached. We therefore conducted a series of long-term imaging exper-

iments in a new cohort of mice where OFC activity was tracked long after initial learning.

Like before, we observe that a robust CS+ representation emerges during initial learning,

when mice display anticipatory licking in >85% of trials for the first time (Figure 3.20).

Imaging was conducted for an average of 5 sessions past complete learning. We observe

that robust responses to CS+ odors decay when learning performance plateaus. The decline

appears to be gradual, progressively decaying from a peak response where 35% of OFC

neurons respond to CS+ odors during initial task acquisition to 15% on the 4th training

session after having completely learned the task (Figure 3.21).

We now ask whether OFC will respond as robustly to the learning of new associations

during discrimination training once mice have already learned an example association dur-

ing pre-training. The structure of this task was identical to that used in prior optogenetic

experiments, consisting of a pre-training epoch (1 CS+ odor) and a subsequent discrimina-

tion epoch (2 CS+, 2 CS- odors). As expected, a significant fraction of OFC neurons (35%)

acquired robust and consistent responses to the CS+ odor during pre-training (Figure 3.22).

This fraction is similar to the fraction of neurons that were responsive to CS+ odors when

mice underwent discrimination training without prior pre-training (40% in discrimination
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training vs 38% in pre-training, Figure 3.23). While we did not over-train animals past the

point of initial acquisition, we observed (but did not quantify) that the representation to the

CS+ odor decays after initial task acquisition. Once pre-training is complete, we then switch

to discrimination learning. When mice have successfully learned discrimination training,

we observe that fewer neurons were responsive to the new CS+ odors as compared to the

pre-trained CS+ odor (38% after pre-training vs 28% after discrimination training, Figure

3.22). Moreover, on average, there was no increase in the size of the CS+ odor ensemble or

of the CS- odor ensemble after discrimination learning. Therefore, the OFC does not appear

to be actively encoding learned associations past the acquisition of the first association. We

thus conclude that the OFC is not needed for either behavioral generalization to novel CS+

odors nor for learning lick suppression once mice have already learned the task structure.

In summary, these series of imaging results reflect the behavioral deficits that we ob-

serve from OFC inhibition. Responses to CS+ odors in the OFC is only robust during ini-

tial task acquisition, whether it is pre-training or discrimination without prior pre-training.

Likewise, silencing the OFC during this period causes dramatic impairments in associa-

tional learning. However, silencing the OFC during the learning of subsequent associations

produces no behavioral deficits, and imaging results also reveal that the OFC does not ap-

pear to be engaged during this time period. Both imaging and inhibition results suggest that

the OFC is important for initial task acquisition.
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3.3 Discussion

Previous recording studies have isolated neurons that were sensitive not only to the ex-

pected value of CS cues but also to sensory identity and a myriad of other factors such as

nose-poking, past odor identity, and reward history (Schoenbaum and Eichenbaum 1995).

Responsivity to a diverse array of task-relevant variables in prefrontal regions has led to

the hypothesis that such a representation increases the information content, or ”dimension-

ality”, of the encoding (Rigotti et al. 2013; Schoenbaum and Eichenbaum 1995). While

we have not yet quantified the dimensionality of the temporal dynamics of OFC responses,

most OFC neurons do not appear to discriminate between CS+ odors and do not encode CS-

odors. Therefore, the dimensionality of OFC’s odor representation appears to be low and

is reflected by the higher percentage of variance explained by the first principle component

in a PCA of OFC population activity (50 % variance explained). Moreover, CS+ neurons

also respond homogeneously to perturbations in state, context, and changes in reward con-

tingencies during reversal learning. Therefore, the only quantity that we observe the OFC

to encode is expected value. With this said, we acknowledge that we have intentionally

defined a minimal set of task parameters, and we have not assessed, for example, whether

the OFC is encoding motor actions in tasks where motor planning is integral to the retrieval

of reward (Roesch et al. 2006; Feierstein et al. 2006). Moreover, we have also not explored

whether responses in the OFC generalize across sensory modalities.

Many previous behavioral experiments have assayed OFC function only after first per-

forming the lesion and then shaping animals on a pre-training task. In agreement with our

results, these experimenters have observed that OFC does not impair subsequent learning
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(Chudasama et al. 2007; Izquierdo et al. 2004; West et al. 2011). In light of our results, the

prior conclusion that OFC is dispensable for forming simple associations may be based on

experiments that did not assay OFC function when the OFCwas engaged during task acqui-

sition. Indeed, when OFC function is assessed during the first learning bout, it appears to

be essential for the learning of a simple association. Moreover, nearly all electrophysiolog-

ical studies in the OFC, particularly in primates, have also been performed on experimental

subjects that are already well-trained (Saez et al. 2015; West et al. 2011). Given that we

observe that the OFC is dispensable after initial task acquisition, and that there is a strong

decay in the CS+ representation after task acquisition, recording OFC activity in animals

that are well-trained may not reflect what the OFC is encoding during initial task acquisi-

tion, when it is necessary for learning. With that said, many previous tasks in primates and

rodents are more cognitively complex and have a larger number of task-relevant variables

compared to the simple classical conditioning task that we have employed, and it is cur-

rently unclear whether the increase in cognitive demand may require the OFC to be active

not only during the learning period but throughout the entire task.

Several future experiments can further define what the OFC is encoding. First, is the

encoding of expected value modality-specific? To resolve this question, both odor and

tone could be paired with reward, and the overlap in their representations after learning

could be examined. Second, is the encoding valence-specific? To resolve this question,

different odors could be paired to both appetitive and aversive USs, and the overlap in

their representations could be examined. Third, is the encoding motor-specific? To resolve

this question, mice could be trained to perform two different actions that both result in

water delivery, and the overlap in the representations of these two motor actions could be
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examined. We reason that the OFC cannot dedicate unique neural ensembles to encode

sensory modality, or valence, or motor action. Given that 35% of OFC neurons encode

a learned appetitive association, I expect that any other associative learning will also take

up an equally dense representation. Thus, representations of opposing valences, of distinct

modalities, and of distinct motor actions must share significant overlap. Indeed, when mice

were trained to perform different motor actions upon the delivery of odors to retrieve the

same reward, the representations of the two odors cuing different motor actions are highly

overlapping in the OFC (unpublished).
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Figure 3.1
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Figure 3.1. Antero-posterior view of the orbitofrontal cortex. the OFC comprises of the
lateral orbitofrontal (ORBl) and the ventrolateral orbitofrontal cortex (ORBvl). Adapted
from the Allen Brain Atlas.
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Figure 3.2
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Figure 3.2. OFC Population Activity Before and After Learning. OFC responses in
all neurons recorded from 5 mice. Each row denotes a single cell’s trial-averaged DF/F
responses to CS+1 (PIN), CS+2 (MSY), CS-1 (EUY), CS-2 (LIM). Response to water is
the 5th column in the part B. Scale bars indicate an increase in DF/F (red) or a decrease in
DF/F (blue) relative to baseline. A. Responses prior to learning are non-selective. B. 35%
of neurons respond to CS+ odors after learning. These responses tile the entire task period
are almost identical for two distinct CS+ odors paired with the same reward.
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Figure 3.3
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Figure 3.3. Pairwise Decoding of Odors Using OFC Population Activity. For each
mouse, a binary linear decoder was trained on population OFC activity from a subset of
odor trials and was then asked to decode the identity of the odor using held-out trials. Green
curve indicates decoding between CS+1/CS+2 odors, red curve indicates decoding between
CS-1/CS-2 odors, and gray indicates all 4 pairwise combinations of CS+/CS- odors. Er-
ror bars indicate standard deviations of decoding performance across different mice. The
decoder was trained and tested at each time-point (see Methods). A. Prior to learning, de-
coding accuracy was poor for all odor pairs. B. After learning, decoding performance only
improved for pairs of CS+/CS- odors, suggesting that OFC acquired a representation of
expected value.
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Figure 3.4
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Figure 3.4. OFC neurons acquire responses to CS+ odors during learning. Tracking
responses of 5 example cells to odors before learning (naive odor presentation), during
learning (anticipatory licking in 50%), and fully learned (anticipatory licking in >90%
of CS+ trials) in the three rows from top to bottom, respectively. All 5 cells acquired re-
sponses to CS+ odors, with some cells acquiring it earlier in training and others later. These
responses have varied response dynamics and onset times, but were identical for multiple
and distinct CS+ odors in the same neuron. Each point is a single mouse, and connected
lines relate fractions responsive before and after learning in each mouse.
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Figure 3.5
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Figure 3.5. Quantification of Odor-Evoked Responses Before andAFter Learning. A.,
B. Fraction of neurons responsive to CS+ odors increased, while responses to CS- odors
and to the US remained constant after learning.
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Figure 3.6
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Figure 3.6. Quantification of Overlap Before and After Learning. A. Fraction of cells
responsive to both CS+ odors increased as a function of learning. B. CS+/US: 60% of neu-
rons responsive to US have a significant CS+ response. US/CS+: 40% of CS+ responsive
neurons are US responsive after learning.
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Figure 3.7
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Figure 3.7. OFC responses are variable and temporally heterogeneous. A. The onsets
of CS+ responses in the OFC tile the duration between odor onset and water onset. B.
OFC responses exhibit almost double the trial-by-trial variability as compared to piriform
responses.
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Figure 3.8
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Figure 3.8. Consistency of OFC Responses to Odors Before and After Learning. Con-
sistency of response was measured by assessing the fraction of neurons that are responsive
to CS+ odors on consecutive imaging days. This was done for each mouse before and after
learning (each line). Responses to CS+ odors become more consistent after learning, but
CS- responses did not growmore consistent after learning. US responses appear to increase
slightly in consistency as a result of learning.
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Figure 3.9
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Figure 3.9. False negative CS+ trials are similar to true positive CS+ trials. A binary
decoder was trained on CS+ lick trials and CS- non-lick trials, and then asked to decode the
identity of false positive (no lick) CS+ trials. A. Decoder categorized false positive trials
as CS+ lick trials, suggesting that motor action is not significantly encoded in the OFc.
Cumulative data from 5 mice. B. Trials as grouped by different mice.
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Figure 3.10
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Figure 3.10. Responses to CS+ and CS- Odors Reverse After Reversal Learning. A.
Tracking the odor responses of 3 example cells before and after reversal learning. Prior
to reversal learning, robust responses are observed to CS+ odors. After reversal, these
responses diminish and are replaced by responses to new CS+ odors. Note that responses to
old CS+ odors never fully diminish despite complete behavioral suppression of anticipatory
licking to these odors. B. Quantification of fraction of cells responsive to CS+ and CS-
odors before and after learning. Green color denotes CS+, red color denotes CS-. C. For
all cells that display significant responses to CS+ odors either before or after reversal, we
found that 55% of cells fully reversed their responses during reversal. 30% of neurons were
not responsive to CS+ odors pre-reversal but gained a response post-reversal, whereas 15%
of neurons were responsive to CS+ odors pre-reversal but were not responsive to the new
CS+ odors post-reversal.
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Figure 3.11
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Figure 3.11. OFC Responses are Gated by State and Context. A. Left: tracking re-
sponses of 3 example cells before and after quenching thirst. When mice are sated, re-
sponses to CS+ responses vanish. Right: average DF/F of all CS+ responsive neurons
before and after satiation. B. Same as A, except for water port removal.
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Figure 3.12
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Figure 3.12. Pairing Laser Activation with Reward Evokes Similar CS+ Responses in
OFC as Odor-Pairing. Population OFC responses to CS+ odors (MSY, PIN), CS- odors
(EUY, LIM), Laser trials (Laser), and US only trials (Water). Responses to laser after learn-
ing evoked activity in similar sets of neurons as evoked by CS+ odor delivery.
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Figure 3.13
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Figure 3.13. Activation of Jaws reliably inhibits neural activity inOFC.A. Spike rasters
of 3 example neurons with Jaws activation denoted by the pink bar. Neural activity was
reliably inhibited. B. Spike rate summary of the correspond cells in part A. C. Quantifi-
cation of spike rates before and during inhibition for all recorded neurons. Inhibition was
apparent in over 80% of all recorded neurons.
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Figure 3.14
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Figure 3.14. OFC Inhibition Impairs Associational Learning During Discrimination.
Behavioral data for an example control mouse (top) and an OFC-inhibited mouse (bottom).
The control mouse learn to lick to CS+ odors within 30 trials, whereas the OFC-inhibited
mouse never learns.
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Figure 3.15
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Figure 3.15. Quantification of Behavioral Effects with OFC inhibition. A.Anticipatory
licking as a function of trials for all 4 mice. Blue denotes the average anticipatory lick
rate to the two CS+ odors for one mice, whereas red is the same for CS- odors. Control
mice take 30-50 trials to learn to display robust anticipatory licking to CS+ odors. 2 mice
never learned the task, whereas the other 2 learned it within a normal range of trials. B.
Quantification of false positive rate on last day of training.
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Figure 3.16
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Figure 3.16. OFC Inhibition Impairs Associational Learning During Pre-Training.
Behavioral data for an example control mouse (top) and an OFC-inhibited mouse(bottom)
during pre-training. The control mouse learn with 50 trials (2 days of training) whereas the
OFC-inhibited mouse learn in 150 trials (4 days of training).
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Figure 3.17
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Figure 3.17. Quantification of Behavioral Effects During Pre-training with OFC in-
hibition. A. Anticipatory licking as a function of trials for 4 YFP mice (top) and 5 OFC-
inhibitedmice (bottom). B.Control mice take 55 trials to learn to display robust anticipatory
licking to CS+ odors, whereas OFC-inhibited mice take 100 trials.
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Figure 3.18
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Figure 3.18. OFC Inhibition Does not Impair Discrimination Learning After Pre-
Training. A. Behavioral performance during discrimination learning immediately after
pre-training for an example YFP control mouse (top) and an mouse with OFC silencing
during discrimination but not pre-training (bottom). In both conditions, mice generalize
licking and rapidly suppress to CS- odors. B. Summary of learning rate for control mice
(YFP), inhibition only during discrimination (DT IH), or inhibition during both pre-training
and discrimination (PT+DT IH). Green denotes number of trials to lick to CS+ odors, and
red denotes time to suppress to CS- odors. Inhibition in all conditions had no effect on
learning.
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Figure 3.19

117



Figure 3.19. OFC Inhibition Causes Same Behavioral Deficits in a Freely Moving Be-
havioral Paradigm. A.Quantification of learning rate during pre-training with andwithout
OFC inhibition. Red: OFC inhibition with halorhodopsin. White: YFP controls. Learning
performance was quantified as average anticipatory lick rate for each day of training. Si-
lencing the OFC impairs licking to CS+ odors B. Silencing the OFC during discrimination
training after pre-training with an intact OFC does not impair learning.
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Figure 3.20
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Figure 3.20. OFCResponses Decay After Learning has Plateaued. Population response
of OFC neurons to CS+ and CS- odors during initial learning and 5 days of training past
initial learning. Significantly less neurons respond to CS+ odors after over-training.
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Figure 3.21
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Figure 3.21. Quantification of Response Decay After Initial Learning. Number of
neurons that are more responsive to CS+ odors than CS- odors, quantified on each day of
imaging for 4 mice. Dotted line denotes fraction of trials that mice displayed anticipatory
licking to CS+ odors. Responses in 3/4 mice peak during initial learning and progressively
declines after learning perfroamcne plateaus.
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Figure 3.22
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Figure 3.22. OFC is not Engaged During Learning of Subsequent Associations. Pop-
ulation response of OFC neurons to CS+ and CS- odors during pre-training and discrimi-
nation. Left: the CS+ odor used was ISO, or isoamyl acetate. Potentiated responses were
observed after learning the pre-training task compared to prior to pre-training. Right: re-
sponses to CS+ and CS- odors when mice have learned to lick to CS+ odors and suppress
to CS- odors. Minimal activation was observed to CS+ odors during subsequent discrimi-
nation learning.

124



Figure 3.23
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Figure 3.23. OFC is not Engaged During Learning of Subsequent Associations. Re-
sponses to odors during pre-training and during discrimination. Responses to the pre-
trained CS+ odor is potentiated during pre-training, rising from 25% before pre-training
to 40% after pre-training. However, responses to new CS+ odors during discrimination
learning is not potentiated after pre-training, staying constant at 26% on average. Repre-
sentation to CS- odors also do not change significantly during discrimination learning.
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Chapter 4

The Medial Prefrontal Cortex

4.1 Introduction

We have delineated a circuit where sensory identity from the piriform is transformed into

a representation of predicted value downstream in the OFC. This representation is neces-

sary for the acquisition of task structure but not for subsequent learning once task structure

has been learned. Therefore, learning must be transfered into a brain area for long-term

storage. Potential candidate brain regions must satisfy two criterion: it must maintain a

stable representation of the learned cues after initial learning, and the inhibition of these ar-

eas must necessarily impair task performance. We describe a set of inhibition experiments

carried out in brain regions that have previously been implicated in task performance and

associational learning, the basolateral amygdala and the medial prefrontal cortex.

The Medial Prefrontal Cortex

In rodents, the mPFC is identified as the agranular frontal lobe and is partitioned into the

anterior cingulate (ACC), the prelimbic (PL), and the infralimbic (IL) cortices. Here we

will focus on the PL and IL. PL and IL are defined by different cytoarchitectonic features,

laminar organization, and projection patterns, with the PL dorsal to the IL (Giustino and
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Maren 2015). The IL receives and projects to autonomic areas such as the parabrachial

nucleus, the lateral preoptic areas, central amygdala, nucleus accumbens, and posterior

hypothalamus (Vertes 2004). Thus, IL is thought to be critical for modulation of autonomic

or affective functions. In contrast, the PL mainly receives and targets cognitive and limbic

structures such as the striatum, the basolateral amygdala, the orbitofrontal cortex, and the

raphe nuclei.

Several previous studies have demonstrated that the PL and IL may have opposing roles

in fear learning (Vidal-Gonzalez et al. 2006; Sierra-Mercado et al. 2011). While inactivation

of IL appears to impair the acquisition and expression of extinction learning, it had no effect

on fear learning. In contrast, while inactivation of PL impaired learned fear expression, it

had no effect on extinction learning. Therefore, whereas PL promotes fear learning, IL

promotes fear extinction. However, a recent study has shown that pyramidal neurons in PL

project to pyramidal neurons in IL, and that the activation of this connection enhances fear

extinction, thus redefining the role of the PL in extinction learning (Marek et al. 2018).

The role of the IL and PL in appetitive learning is less well-understood. Previous record-

ing studies in the mPFC have revealed correlates that are thought to be related to the an-

ticipation of reward (Pratt and Mizumori 2001; Miyazaki et al. 2004; Mulder et al. 2003).

Recent imaging experiments have revealed that the PL acquires responses to rewarded but

not unrewarded auditory cues in a classical conditioning task (Otis et al. 2017). Segregated

populations of pyramidal neurons project to the striatum and thalamus; while striatal projec-

tors acquire excitatory responses to rewarded cues, thalamic projectors develop inhibitory

responses. Bidirectional manipulation of these neurons reflect their tuning; exogenous ac-

tivation of corticostrial neurons promotes reward-seeking behavior, while corticothalamic
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neurons suppresses reward-seeking. Moreover, it does not appear that PL and IL responses

differ significantly; both the PL and IL exhibits prominent excitatory responses during re-

warded but not unrewarded lever presses in an operant learning task (Burgos-Robles et al.

2013). We therefore asked whether the mPFC (PL and IL) encodes learned sensory cues

and whether it is necessary during appetitive learning.

4.2 Results

mPFC Encodes Positive and Negative Value and Is Necessary for

Continued Task Performance

Using same methods as described in Chapter 2, we imaged mPFC population responses.

We were able to track an average of 60 mPFC neurons per animal across multiple training

days. Prior to learning, few mPFC neurons were responsive to naive odors (15% to a given

odor, Figure 4.1.A). Moreover, neural responses in mPFC were also largely unresponsive

to water (>10% to water, Figure 4.1.B).

We then trained a single mouse in the head-fixed discrimination assay as described

in earlier chapters. Unlike what we have previously observed in the OFC, mPFC neu-

rons acquired potentiated responses to both CS+ and CS- odors. These responses also ap-

pear to be independent of US responses, and most responses appear to start immediately or

close to odor onset. One subpopulation of cells (30%) acquired strong responses to CS+

odors, and another subpopulation (30%) acquired strong responses to CS- odors (Figure

4.1). Moreover, the ensembles of distinct CS+ odors shared high overlap after learning,
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and this was similarly the case for CS- odors. Overlap increased from an average of 30%

before training to 70% after training when comparing the two CS+ ensembles, and from

30% to 60% for CS- ensembles. However, the ensembles of any CS+ and CS- odor were

largely non-overlapping, decreasing from 50% to 20% after training. Therefore, unlike the

OFC, not only do CS- odors activate the mPFC, the representation of CS- odors are also

non-overlapping with CS+ odors after learning (Figure 4.8). Therefore, the mPFC appears

to encode both positive and negative value while discarding odor identity. The encoding

of signed value suggest to us that the mPFC may be driving both the licking to CS+ odors

and also the suppression of licking to CS- odors.

We then asked whether this representation is maintained after initial task acquisition,

unlike what we have observed in the OFC. To test this, we imaged the mPFC using the same

composite pre-training and discrimination task that we have used in OFC learning tasks, as

described in Chapter 3. Like before, mice underwent pre-training to a single CS+ odor

and once they have learned the task, they were then switched onto a discrimination assay

where two new CS+ and CS- odors were presented. When we imaged the mPFC within

this composite task, we observed responses that had time courses that were the opposite of

what we had previously seen in the OFC.

mPFC neurons did not acquire significant numbers of CS+ neurons during pre-training

(25% before learning to 28% after learning). However, during discrimination training,

mPFC neurons acquired robust and numerous responses to both CS+ and CS- odors, simi-

lar to what we have previously observed during discrimination training without pre-training

(Figure 4.2). After learning discrimination training, the number of neurons responsive to

CS+ odors increased from an average of 18% before learning to 30% after learning, and
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this was also the case for neurons responsive to CS- odors, increasing from 20% before

learning to 30% after learning (Figure 4.3.A).

In contrast, we observe the exact opposite in the OFC. Within the OFC, the biggest

change in representation occurred during pre-training, where the CS+ representation in-

creased from 28% to 40%. However, during subsequent discrimination training, the size of

the CS+ ensemble did not significantly change when learning the value of new CS+ odors

(26% to 28%) (Figure 4.3.B). These sets of results suggest that the mPFC is more engaged

during discrimination learning compared to during pre-training, whereas the exact opposite

is true in the OFC.

Moreover, not only aremPFC odor responsesmore consistent after discrimination learn-

ing compared to after pre-training, they are also stronger. When we pooled the set of neu-

rons responsive to CS+ odors and computed the average odor-evoked DF/F of this popula-

tion, the response was greater after discrimination learning as compared to after pre-training

(Figure 4.4.A-C). This was also the case if we compared either CS- or CS+ responses after

discrimination training to responses evoked by the same respective odors before training

started. However, this was not the case for responses in the OFC (Figure 4.4.A-C).

Our past OFC imaging results reveals that the OFC is active early during task acquisition

but not late during the learning of subsequent associations. These imaging results gener-

ated the hypotheses that silencing the OFC early may produce learning deficits, whereas

silencing it late may have no effect, and both were confirmed using optogenetic perturba-

tion experiments. Our current mPFC imaging results now reveals that the mPFC is silent

early during task acquisition but is recruited during the learning of subsequent associations.

In the same way, we hypothesize that the mPFC be necessary for generalizing what mice
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have previously learned for the learning of new associations. We therefore silenced the

mPFC during pre-training and separately during discrimination training to assess mPFC’s

contribution to both task acquisition and task generalization.

For this purpose, we used the same freely moving paradigm described before in Chapter

3, and optogenetically inhibited the mPFC bilaterally either during the pre-training epoch

or during the subsequent discrimination epoch. Silencing the mPFC during the pre-training

phase did not appear to inhibit task performance, as mice took an average of 500 trials

to learn in either the control or experimental condition (Figure 4.6). As described earlier,

control mice in this task generalize their learned behavior in pre-training by licking in an-

ticipation to all new CS+ odors at the start of discrimination. However, silencing the mPFC

during discrimination training impairs the mouse’s ability to generalize. Licking at the on-

set to CS+ odors is drastically reduced from an average of 30% time spent licking to 8%,

suggesting that mice have forgotten what it has previously learned during pre-training (Fig-

ure 4.7). Mice then appear to re-learn licking to CS+ odors by initially licking to all odors

(CS+ and CS- odors, during trials 0-100) and then refining anticipatory licking to only CS+

odors. In addition to impairing initial generalization, mPFC silencing also appears to im-

pair licking to CS+ odors in a subset of mice for a prolonged duration. The rate of false

negatives to CS+ odors (failure to display anticipatory licking to CS+ odors) remained high

throughout the entire training period for 2/5 mice during mPFC inhibition, whereas other

mice were similar to controls (Figure 4.7). Suppression of licking to CS- odors was unaf-

fected in all mice; the rate of false positive licking to CS+ odors were similar to controls

(Figure 4.7).

In summary, whereas OFC silencing drastically impairs task acquisition during pre-
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training, mPFC silencing impairs the learning of new associations after initial acquisition

(Figure 4.5). This suggests to us that the brain learns to form associations through a set

of parallel but interconnected series of brain regions that are specialized during different

phases of learning.

4.3 Discussion

We observe multiple deficits in learning the discrimination task when silencing the mPFC

using halrhodopsin. First, mice fail to generalize what they have learned during pre-training

and appear to re-learn the task anew. This result implies that at the very start of discrim-

ination, the mPFC is required for generalizing what it has previously learned to new odor

stimuli. Early in discrimination learning, most odor-evoked responses are non-specific,

suggesting that the mPFC is treating CS+ and CS- odors similarly. Therefore, it is pos-

sible this population of non-selective odor-responsive neurons in the mPFC is responsible

for driving odor generalization during the initial phase of discrimination learning after pre-

training. Some mice (2/5 mice) fail to learn even after pro-longed training when the mPFC

is silenced. These results agree with our observation that mPFC activity tracks the value of

both CS+ and CS- odors during discrimination learning. We give reasons for why different

prefrontal areas may be engaged in during different phases of learning in chapter 5.

A recent imaging paper also imaged CS+ and CS- odors during an auditory classical

conditioning task (Otis et al. 2017). The task variables that Stuber and colleagues have

employed were virtually identical to ours except that they also used a viral approach to

transfect neurons with GCaMP6s. They observed that 35% of mPFC neurons acquired
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responses to CS+ odors, and no neurons acquired responses to CS- odors as a consequence

of learning. In contrast, we observe slightly fewer neurons that acquire responses to CS+

odors (30%), but we also observe a significant fraction of neurons that acquire responses to

CS- odors (30%). Injection coordinates used were also similar in both studies, focusing on

the PL cortex (Stuber: +1.85 mm AP, +- 0.50 mm ML, -2.20 mm DV; us: +1.65 mm AP,

+- 0.40 mm ML, -2.00 DV). One possible explanation for this difference is that auditory

cues may elicit a different learned representation than olfactory cues. Another possible is

that these differences may be due to a viral transfection issue as described in the subsequent

chapter.
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Figure 4.1
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Figure 4.1. mPFC Population Activity Before and After Learning mPFC responses
in an example mouse. Each row denotes a single cell’s trial-averaged DF/F responses to
CS+1 (PIN), CS+2 (MSY), CS-1 (EUY), CS-2 (LIM). Response to water is the 5th column
(bottom). Scale bars indicate an increase in DF/F (red) or a decrease in DF/F (blue) relative
to baseline. Responses prior to learning (top). 20% of neurons respond to CS+ odors after
learning (bottom). Moreover, a non-overlapping set of 20% of neurons respond to CS-
odors after learning.
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Figure 4.2
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Figure 4.2. mPFC is Engaged During Learning of Subsequent Associations Population
response of mPFC neurons to CS+ and CS- odors during pre-training and discrimination.
Left: the CS+ odor used was OCT, or octanal. Few potentiated responses were observed
after learning the pre-training task compared to prior to pre-training. Right: responses to
CS+ and CS- odors when mice have learned to lick to CS+ odors and suppress to CS- odors
during subsequent discrimination training. Robust activation was observed to CS+ odors
and also to CS- odors in non-overlapping sets of neurons.
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Figure 4.3
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Figure 4.3. mPFC and OFC Responses Have Opposite Time-courses During Pre-
Training and Discrimination Quantification of number of neurons that are responsive to
the pre-trained CS+ odor, the discrimination CS+ odors, and the discrimination CS- odors
before and after learning. Each line represents responses from a single mouse. A. mPFC
responses (n = 4). B. OFC responses (n=4). Whereas the mPFC population did not acquire
significant numbers of CS+ neurons during pre-training, a significant percentage of neu-
rons were potentiated to either CS+ odors or CS- odors during discrimination training. In
contrast, in the OFC, the most significant changes occured during pre-training, and no sig-
nificant changes occured in either the CS+ or CS- ensemble during discrimination training.
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Figure 4.4
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Figure 4.4. mPFCCS+ Responses are greater in amplitude after discrimination learn-
ing Quantification of response amplitude (power) for all responses categorized as statisti-
cally significant from baseline. The responses of all neurons that are deemed statistically
significant were averaged. Shading denotes the SE of responses of different mice. Top:
mPFC. Bottom: OFC. A. Comparing the average amplitude of significant CS+ responses
after pre-training to CS+ responses after discrimination training. B. Comparing the ampli-
tude of significant CS+ responses before discrimination to CS+ responses after discrimi-
nation training. C. Comparing CS+ and CS- responses after discrimination training. D-F.
Same, except for OFC.
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Figure 4.5
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Figure 4.5. mPFC is Necessary for Learning of Subsequent Associations Quantifica-
tion of learning rate during pre-training and discrimination without and without inhibition
in OFC. Red: OFC inhibition with halorhodopsin. White: YFP controls. Learning perfor-
mance was quantified as average anticipatory lick rate for each day of training. A. Silencing
the OFC impairs licking to CS+ odors during pre-training but not during subsequent dis-
crimination. B. The opposite phenotype is observed for mPFC silencing.
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Figure 4.6
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Figure 4.6. Inhibition of mPFC During Pre-training does not Impair Learning A.
Amount of anticipatory licking as a function of trials during pre-training. Y axis scores
the percentage of time that the mouse spent licking prior to water delivery, measured in a
two second time window. Black trace are control mice, red trace are experimental mice.
Control mice have YFP bilaterally injected into the mPFC, and with laser is turned on.
Experimental mice have halorhodopsin bilaterally injected into the mPFC, also with laser
turned on. We observe that mPFC silencing does not impair anticipatory licking B. mPFC
inhibition also does not inhibit anticipatory licking as measured by rate of false positives
(no anticipatory licking to the CS+ odor).
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Figure 4.7

147



Figure 4.7. Inhibition of mPFC During Discrimination Training Impairs Learning
A, B. Silencing the mPFC during discrimination training impairs the mouse’s ability to
generalize what it has learned during pre-training at the onset of discrimination. Licking
at the onset to CS+ odors is drastically reduced, suggesting that mice have forgotten what
it has previously learned. This is also reflected by the initially low lick rate to CS- odors.
Mice then appear to re-learn licking to CS+ odors by initially licking to all odors (CS+ and
CS- odors, during trials 0-100) and then refining anticipatory licking to only CS+ odors. C,
D. mPFC silencing also appears to impair licking to CS+ odors in a subset of mice (false
negatives to CS+ odors), but not the suppression of licking to CS- odors (false positives to
CS- odors).
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Figure 4.8
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Figure 4.8. mPFCgenerates non-overlappingCS+ andCS- ensemblesQuantification of
overlap between CS+:CS+ ensembles,CS-:CS- ensembles, and CS+:CS- ensembles. Over-
lap increases between CS+:CS+ and CS-:CS- ensembles, and decreases between CS+:CS-
ensembles as a result of training.
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Chapter 5

The Basolateral Amygdala

5.1 Introduction

We have delineated a circuit where sensory identity from the piriform is transformed into a

representation of predicted value in the OFC and mPFC. However, limbic structures have

also been previously implicated in associational learning. We describe a set of imaging and

inhibition experiments to assess the representation and function of the basolateral amygdala

during appetitive learning.

The Basolateral Amygdala

Piriform projects to the basolateral amygdala (BLA), a structure in the medial temporal lobe

that is critically required for the acquisition and expression of aversive olfactory learning

(Sosulski et al. 2011; Shepherd 1998). Subjects with lesions in the BLA are unable to form

associations between auditory, visual, gustatory, or olfactory cues with aversive outcomes

(Campeau and Davis 1995; Cousens and Otto 1998). Therefore, BLA activity is required

for both the acquisition and expression of learned fear.

The BLA receives extensive sensory input from all modalities through both cortical

and subcortical routes (Sah et al. 2003; Romanski and LeDoux 1992; Shi and Davis 2001).
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Moreover, input from neuromodulatory systems onto the BLA has been proposed to convey

additional information about unconditioned stimuli (Schultz 2001). BLA is also innervated

by structures implicated in cognitive processes. For example, the BLA receives dense in-

nervation from the orbitofrontal cortex, which may afford the amygdala access to rapid

updates to the expected value of the CS cues (Carmichael and Price 1995).

The BLA also sends projections to both cortical and subcortical structures to mediate

the cognitive, behavioral, and physiologic output integral to an emotional response (Sah et

al. 2003). Efferent projections to cortical areas have been implicated in numerous cognitive

processes, such as memory consolidation (Quirk et al. 1997). Projections to striatum may

support instrumental learning (Stuber et al. 2010), and projections to the extended amygdala

may elicit changes in autonomic reactivity, such as increases in anxiety-related behaviors

(Kim et al. 2013).

In summary, the amygdala receives input from sensory areas and from neurmodulatory

areas that convey information regarding unconditioned stimuli, and projects to downstream

structures are capable of eliciting behavior. These facts suggest that the amygdala may be

capable of associating sensory stimuli with unconditioned stimuli to generate appropriate

learned responses. Indeed, electrophysiological recordings have observed that both the

amplitude and the number of CS-evoked BLA responses increased when the CS has been

repeatedly paired with US (Tye et al. 2008; Rosenkranz and Grace 2002; Rosenkranz and

Grace 2003). Moreover, this potentiation appears to occur in a dopamine-dependent man-

ner (Rosenkranz and Grace 2002; Rosenkranz and Grace 2003). This plasticity appears to

precede the development of learned behavioral responses to the cue and is therefore be-

lieved to drive learning (Quirk et al. 1997). Further support comes from studies that show
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that depression of synaptic inputs into the BLA conveying sensory information can abolish

previously acquired cue-evoked fear memory (Nabavi et al. 2014).

How does the BLA link associations between the CS and US during learning? Recent

studies have demonstrated that the exogenous activation of US-responsive cells in the BLA

elicits valence-specific responses (Gore et al. 2015). US ensembles driving behaviors of

opposing valence are non-overlapping, and the activation of US-responsive BLA neurons

is both sufficient and necessary for the expression of a conditioned response. During learn-

ing, it appears from immediate-early gene data that the representation of CS cues increases

in overlap with the US representation, suggesting that US responsive neurons acquired CS

responses (Gore et al. 2015). This convergence of a CS representation onto a US ensemble

in the BLA is required for the expression of the conditioned response. Therefore, represen-

tations of sensory stimuli connect to a US representation in the BLA to elicit both innate

and learned responses.

Given these facts, we believe that the BLA may encode the long-term memory of a

simple olfactory association. We therefore imaged the BLA during an appetitive task to

assess whether BLA neurons potentiate CS+ responses in a mechanism that is consistent

with Hebbian learning. We expect that CS+ responses are only acquired by neurons that

respond to US. On the other hand, recently published results using calcium imaging have

found that aversive learning-related changes are not predicted by US responses, suggesting

that Hebbian potentiation does not drive learning-dependent changes in the BLA (Grewe

et al. 2017). We also assessed whether this representation remains stable during the entire

course of learning, consistent with an brain area whose function is to store a long-term

memory of a learned association.

153



Extensive evidence has established the importance of BLA in aversive learning, but its

role in appetitive learning is more nuanced (Balleine and Killcross 2006; Everitt et al. 2003;

LeDoux 2000). While experiments have demonstrated that the activation of appetitive US

representation in the BLA can elicit appetitive innate responses (Tye et al. 2008; Gore et al.

2015), lesion and pharmacological inactivation studies indicate that BLA is not necessary

for the formation of simple appetitive associations (Hatfield et al. 1996; Holland 1997). We

thus also ask whether inhibition of BLA impairs appetitive learning.

5.2 Results

BLA Encode Predicted Value

As detailed in Chapter 1, we again implantedmicroendoscopes above the BLA of transgenic

GCaMP6S mice (VGLUT2-ires-Cre X rosa-FLEX-GCaMP6S) and imaged BLA popula-

tion responses during the same head-fixed olfactory appetitive learning task (Vong et al.

2011; Madisen et al. 2015). We were able to track an average of 35 BLA neurons per ani-

mal across multiple training days. CS+, CS-, and US responses were imaged before, during,

and after learning.

Compared to the OFC, calcium activity rarely increase without cue presentation, so

BLA neurons display low levels of spontaneous activity. Prior to learning, 10% of neurons

were responsive to odor, and as in the OFC, these responses were non-selective (Figure

5.1.A). As a consequence, a binary decoder performed at near chance level at distinguishing

between all pairs of odors, suggesting that odor identity is not encoded in the BLA prior to
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learning (Figure 5.2.A). We also found that 35% of BLA neurons were responsive to the

US.

As in the OFC, BLA neurons acquired potentiated responses to CS+ odors but not CS-

odors during learning (Figure 5.1.B, 3.4). Again, the representations of the different CS+

odors are almost identical (Figure 3.4). The level of overlap between the two CS+ odors in-

creased from 30% prior to learning to 90% post learning (Figure 3.5). Moreover, responses

to CS+ odors also appear identical in a majority of neurons. Given the similarity between

population responses to different CS+ odors, linear decoders were unable to successfully

decode their identity as well. Value, on the other hand, was easily decoded when compar-

ing the responses between any pair of CS+ and CS- odor (Figure 5.2.B). A major difference

between BLA and OFC responses is that most CS+ responses are acquired by neurons that

are US-responsive (Figure 3.5). Almost all neurons (90%) that are US-responsive acquired

CS+ responses. Conversely, 80% of neurons that are responsive to CS+ also respond to

the US. This suggests that a Hebbian mechanism may elicit potentiation of CS+ responses

through the convergence of sensory and US information.

Responses to CS+ odors in the BLA appear temporally homogeneous and had similar

waveforms, durations, and onset times (Figure 5.5). To confirm this observation, we per-

formed a principal component analysis (PCA) on the population PSTH of all BLA neurons

to quantify the variability of activity evoked by BLA neurons in response to cue delivery.

We observed that almost all the variance (80%) was accounted for by the first principal

component. Therefore, the first PC is essentially an exemplar neuron which displays ro-

bust odor-locked responses to both CS+ odors and the US, and to a good approximation, all

CS+ responses in the BLA are approximately scaled copies of the first PC. In addition to
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the temporal homogeneity of responses, we also observe that BLA responses are far more

consistent across days compared to OFC responses (Figure 3.5). 80% of CS+ responses

and 75% of US responses were retained across consecutive imaging days.

We also tested whether the BLA encodes predicted value by imaging the BLA during

manipulations of internal state, context, and reversal learning. Conclusions derived from

these experiments were identical to that of the OFC. The majority of CS+ neurons in the

BLA completely reversed their selectivities to CS+ and CS- odors during reversal learning

(Figure 5.6.A, B, C). After reversal, all neurons (40% of the BLA representation) lost their

responses to the old CS+ odors and acquired responses to new CS+ odors. Moreover, BLA

responses were also sensitive to state and context (Figure 5.6.E,F). Again, nearly all neurons

that are responsive to CS+ odors (40% of BLA representation) lost their CS+ responses

when mice were not thirsty or when the lick port was not present. The average DF/F of

CS+ responsive neurons decreased from 10% DF/F to 1% DF/F after manipulating state

or context. Therefore, nearly all BLA neurons updated their responses in a way that is

consistent with the encoding of expected value.

BLA Is Not Necessary for Appetitive Learning

The OFC and BLA share dense direct reciprocal connections and also interact through tha-

lamic relays (Barbas and Pandya 1984; Cavada et al. 2000). A number of papers have

suggested that functional interactions between BLA and OFC contribute at least in part to

a battery of goal-directed behaviors (Baxter et al. 2000; Saddoris et al. 2005; Takahashi

et al. 2009; Pickens et al. 2003; Lichtenberg et al. 2017). Moreover, associative encoding
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in one region has generally been shown to be altered by lesions of the other (Saddoris et al.

2005; Schoenbaum et al. 2003; Rudebeck et al. 2013). However, the unique contribution

of each region towards associative learning and towards a representation of value is still up

to debate. We therefore wanted to ask if either region is necessary for appetitive learning,

and whether they have differential roles during the learning process.

We therefore used optogenetics to bilaterally inhibit the OFCwhile assessing the effects

of that inhibition through behavior and through the representation in the BLA. We also

did the converse experiment of inhibiting the BLA and simultaneously imaging the OFC.

The red-shifted rhodopsin, JAWS, provided an activation wavelength that is separated from

the excitation and emission spectra of GCaMP6, and we combined JAWS activation with

smultaneous GCaMP imaging (Chuong et al. 2014) (Figure 3.13).

Inhibition of BLA did not appear to inhibit behavioral performance. Mice took, on av-

erage, the same number of trials to learn to lick to CS+ odors compared to controls (average

of 38 trials for control mice as compared to 36 trials for mice with BLA inhibition) (Figure

5.7). Moreover, the learned representation in the OFC appeared to be spared. A similar

proportion (35%) of CS+ responsive neurons were observed in the OFC when the BLA

is silenced compared to when the BLA is intact (Figure 5.7). Moreover, these responses

had similar attributes as those without BLA inhibition, including the fraction overlap be-

tween two different CS+ ensembles (60 % overlap), and responses to US before and after

learning (20% of OFC were US-responsive) (Figure 5.7). Moreover, we further replicated

this task in freely moving mice and found that again, BLA inhibition did not impair either

pre-training or discrimination learning if discrimination was preceded by pre-training (not

shown).
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In contrast, as we have already described in chapter 3, OFC inhibition caused profound

learning deficits in most mice. We observe fewer CS+ responsive BLA neurons compared

to controls (50% vs 30% in control vs inhibited conditions, Figure 5.7). Moreover, these

responses were weak in amplitude and also inconsistent across trials compared to controls.

To quantify response consistency, we used AUC (area under Receiver Operating Char-

acteristic) to measure the extent of the difference between odor-evoked trials relative to

baseline, with the baseline defined as the 5 second period prior to odor delivery. An AUC

of 1 implies that the odor evoked a robust excitatory response that is perfectly distinguish-

able from baseline fluctuations on every single trial. We averaged the AUC values of the

top 20% responders for CS+ odors on each day, and compared BLA responses with and

without inhibition. The AUC values of BLA responses with OFC inhibition in the 2 mice

with learning deficits were smaller than that without BLA inhibition, averaging under 0.8

compared to over 0.95. Given that the top 20% of responders also attained an average of

.8 AUC in the three days of training prior to learning in the control mice, this suggests that

learning did not cause CS+ odors to drive activity in the BLA in a consistent way when the

OFC was silenced (Figure 5.7). Equivalent results were obtained choosing the top 10-40%

of responders.

The degree of impairment in BLA CS+ responses was variable across different mice.

2 of 5 OFC-inhibited mice learned normally, whereas 3/5 mice were unable to learn the

task. If the BLA representation was causally driven by OFC activity, we would expect

that OFC silencing to abolish the CS+ representation in the BLA regardless of whether

they learned the task or not. Conversely, if the BLA representation tracked behavior and

was independent of OFC silencing, we would expect that BLA activity tracked learning
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performance. In support of the latter, we found that the BLA representation of a OFC-

silenced mouse that learned normally was unimpaired (Figure 5.9). After analyzing the

degree of viral infection, optrode placement, and light loss through the optical fiber post-

mortem, there was no reason to assume that OFC silencing did not work. Therefore, the

BLA representation appears to track learning independent of OFC silencing.

5.3 Discussion

BLA

Our imaging of the BLA agrees with the large corpus of slice and anesthetized record-

ing data suggesting that Hebbian learning drives synaptic potentiation of sensory inputs

onto US-responsive cells in the BLA. In our study, the vast majority of US-responsive

neurons acquire CS+ responses after learning; likewise, most CS+ responsive neurons are

US-responsive, and very few arise from cells that are not US-responsive. Our BLA imag-

ing results differ from a recently published paper that also images calcium dynamics in

the BLA during learning. Schnitzer and colleagues observe that learning-related changes

are not predicted by the neuron’s response to US before learning (Grewe et al. 2017). In

their study, the majority of US responsive cells do not acquire a CS+ response, suggesting

that Hebbian potentiation does not drives learning-dependent changes. Several experimen-

tal differences may explain the discrepancy in our results. First, auditory cues are used in

place of olfactory cues in their task. Second, mice are subjected to fear learning instead of

appetitive conditioning. Third, instead of using transgenic mice, viral vectors were used to
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express GCaMP in their study. These two expression strategies drive significantly different

levels of GCaMP expression. In our particular mouse line, we observe no instances of over-

expression in all of our imaging data, and expression levels were relatively uniform across

different neurons (Madisen et al. 2015). Viral vectors generate more non-uniform and far

greater expression levels, and over-expression of calcium sensors may tax cell integrity,

leading to errant responses that may not be representative of normal neuronal function.

Several previous studies have shown that the BLA is necessary for fear learning (Gore

et al. 2015; Walker et al. 2005; Cousens and Otto 1998). Recent studies have shown that

the photoactivation of nicotine-responsive BLA neurons can generate appetitive behavioral

responses and also reinforce appetitive olfactory learning, and we have now shown that a

representation of CS+ odors is maintained in the BLA throughout learning. However, the

necessity of this representation for appetitive learning has not been demonstrated. We have

now shown that BLA activity does not appear to be required for an appetitive discrimina-

tion task in which a mouse is trained to lick in response to an odor that predicts a water

reward. This is in agreement with previous inactivation studies showing that the BLA is

not necessary for the formation of simple appetitive CS-US associations in other sensory

modalities (Hatfield et al. 1996; Holland 1997). Moreover, recent unpublished results from

our lab have shown that while the projection from piriform to the BLA is necessary for

olfactory fear learning, it is not necessary for olfactory appetitive learning (Felicity Gore,

unpublished). Therefore, while a representation of CS+ odors is maintained throughout

learning, and while the BLA activity is sufficient to drive innate appetitive responses, it is

not necessary for learning appetitive olfactory associations either early or late during learn-

ing. We believe that there must be a subtle behavioral function that the BLA must subserve
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during appetitive learning, ones in which our task is not designed to reveal.
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Figure 5.1
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Figure 5.1. BLA Population Activity Before and After Learning BLA responses in
all neurons recorded from 5 mice. Each row denotes a single cell’s trial-averaged DF/F
responses to CS+1 (PIN), CS+2 (MSY), CS-1 (EUY), CS-2 (LIM). Response to water is
the 5th column in the part b. Scale bars indicate an increase in DF/F (red) or a decrease in
DF/F (blue) relative to baseline. Responses prior to learning are non-selective (top). 35%
of neurons respond to CS+ odors after learning (bottom). Responses are almost identical
for two distinct CS+ odors paired with the same reward.
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Figure 5.2
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Figure 5.2. Pairwise Decoding of Odors Using BLA Population Activity For each
mouse, a binary linear decoder was trained on population activity from a subset of odor
trials and was then asked to decode the identity of the odor using held-out trials. Green
curve indicates decoding between CS+1/CS+2 odors, red curve indicates decoding between
CS-1/CS-2 odors, and gray indicates all 4 pairwise combinations of CS+/CS- odors. Er-
ror bars indicate standard deviations of decoding performance across different mice. The
decoder was trained and tested at each time-point (see Methods). Prior to learning, decod-
ing accuracy was poor for all odor pairs (top). After learning, decoding performance only
improved for pairs of CS+/CS- odors, suggesting that BLA acquired a representation of
expected value (bottom).
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Figure 5.3
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Figure 5.3. BLA neurons acquire responses to CS+ odors during learning A. Trial
by trial responses of a BLA neuron during learning. This US-responsive neuron acquires
responses to CS+ odors. B. Tracking responses of 4 example cells to odors before learning
(naive odor presentation), during learning (anticipatory licking in 50%), and fully learned
(anticipatory licking in >90% of CS+ trials). All 4 US-responsive cells acquire responses
to CS+ odors.
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Figure 5.4
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Figure 5.4. Quantification of Odor-Evoked Responses Before and AFter Learning A,
B. Fraction of neurons responsive to CS+ odors increased, while responses to CS- odors
and to the US remained constant after learning. C. Fraction of cells responsive to both CS+
odors increased as a function of learning. D. CS+/US: 60% of neurons responsive to US
acquired an CS+ response. US/CS+: 40% of CS+ responsive neurons are US responsive
E. Consistency of BLA responses across consecutive days post-learning
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Figure 5.5
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Figure 5.5. BLA responses are temporally homogeneous A.The onsets of CS+ responses
in the BLA mostly occur at odor onset. B. OFC responses exhibit similar trial-by-trial
variability as compared to piriform responses. C. Principal component analysis (PCA) was
performed on the population PSTH of the BLA to quantify the variance of the population.
The first PC accounted for the majority of variance within the entire population (80%). D.
The first PC illustrates that almost all neurons exhibit similar responses to different CS+
odors, and these responses are acquired only in US-reponsive neurons.
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Figure 5.6
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Figure 5.6. BLA responses are temporally homogeneous A. Tracking the odor responses
of 3 example cells before and after reversal learning. Prior to reversal learning, robust
responses are observed to CS+ odors. After reversal, these responses diminish and are
replaced by responses to new CS+ odors. B. Quantification of fraction of cells responsive
to CS+ and CS- odors before and after learning. Green color denotes CS+, red color denotes
CS-. C. For all cells that display significant responses to CS+ odors either before or after
reversal, we found that 70% of cells fully reversed their responses during reversal. 15% of
neurons were not responsive to CS+ odors pre-reversal but gained a response post-reversal,
whereas 15% of neurons were responsive to CS+ odors pre-reversal but were not responsive
to the new CS+ odors post-reversal. D. Tracking responses of 3 example cells before and
after quenching thirst. When mice are sated, responses to CS+ responses vanish. E. Top:
average DF/F of all CS+ responsive neurons before and after satiation. Bottom: same as
above, except for water port removal.
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Figure 5.7
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Figure 5.7. Inhibition of BLA has no effect on behavior or on OFC representation
A. The number of trials it takes for mice to display anticipatory licking is unaffected by
BLA inhibition. B. OFC responses imaged during BLA inhibition are quantitatively similar
to response without inhibition. Analyzed statistics include percentage of CS+ neurons,
overlap between CS+ neurons, and fraction of US responsive neurons.
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Figure 5.8
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Figure 5.8. Inhibition of OFC impairs the BLA representation A. BLA population
response to odors on day 5 of training without OFC inhibition (left) and with OFC inhibition
(right). B. Far fewer neurons were responsive to odor cues in the BLA with OFC inhibition
C. BLA neurons that were responsive to CS+ odors during OFC inhibition were also far
more inconsistent as compared to controls.
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Figure 5.9

178



Figure 5.9. Inhibition of OFC impairs learning A. Fraction of BLA neurons responsive
to CS+ and CS- odors during OFC inhibition as a function of learning. Black dotted line
denotes fraction of CS+ trials that showed anticipatory licking. Representations of learners
(bottom) were similar as compared to controls whereas the representations of non-learners
were impaired (top).
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Chapter 6

Discussion and Conclusion

6.1 Piriform Cortex Provides a High Dimensional Odor

Representation

The cerebellar theory developed by Marr and Albus has provided a simple and powerful

framework to understand why so many brain areas involved in associative learning are

defined by sparse coding in a large homogeneous populations of neurons (Marr 1971; Marr

1969). This theory proposes that within the cerebellum, the abundance of granule cells

exist to support a high dimensional representation of sensory information conveyed by a

far lower number of mossy fiber inputs, and the large number of synapses that granule cells

make with the the principal neurons of the cerebellum (Purkinje cells) allows them to form

precise associations during learning. This theory is characterized by two key parameters:

that mossy fibers make sparse and random connections to granule cells, and that there is

a large expansion ratio, where granule cells outnumber their mossy fiber inputs 10-100

fold (Huang et al. 2013; Chabrol et al. 2015; Ishikawa et al. 2015; Stettler and Axel 2009).

Indeed, each granule cell receives input from an average of only 4 mossy fibers, and granule

cells outnumber mossy fibers by 30-fold.

This feature is shared by neurons that play roles similar to granule cells in other neural
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circuits, such as the dorsal cochlear nucleus, the electrosensory lobe of the electric fish,

or the insect mushroom body (Caron et al. 2013; Keene and Waddell 2007; Bell et al.

2008; Mugnaini et al. 1980; Eccles et al. 1966). Indeed, multiple modeling studies have

observed that this sparse input connectivity is well-suited for producing high-dimensional

representations that can then be read out by densely connected downstream output neurons

for learning (Litwin-Kumar et al. 2017; Babadi and Sompolinsky 2014; Barak et al. 2013;

Rigotti et al. 2013). Moreover, dimensionality quickly saturates as synaptic degree grows,

implying that sparse connectivity present within these learning systems have evolved to be

optimal (Litwin-Kumar et al. 2017; Babadi and Sompolinsky 2014).

Under this framework, piriform neurons should provide a high dimensional representa-

tion of odors that is fed to downstream associative areas to be modified by learning. Indeed,

previouswork have shown that piriform neurons are characterized by large expansion ratios,

outnumbering their inputs by 30 fold (1 million piriform neurons to 30000 bulbar inputs).

Moreover, current and prior work have shown that piriform neurons appear to encode stim-

uli with sparse and non-overlapping ensembles (Huang et al. 2013; Chabrol et al. 2015;

Ishikawa et al. 2015; Stettler and Axel 2009).

Learning can either occur on piriform’s synaptic inputs or downstream in other brain

regions. There are several important benefits of not imposing changes upstream but rather

downstream. First, random connectivity from bulb to piriform is optimized to decorrelate

odor ensembles. If learning induces non-random changes in input strengths that made them

more structured, this would induce odor ensembles to become more correlated, and there-

fore less discriminable. This problem can be solved by dedicating separate areas down-

stream to learn structured odor representations that reflect learning, salience, and value,
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etc. Additional read-out circuits can thus perceive both the perceptual qualities of odors

from the piriform as well as its value and meaning from regions downstream.

Conversely, if learning induced no loss or growth of new input synapses but simply

made existing ones stronger, this learning rule will quickly suffer from the overlap prob-

lem. Each odor occupies a random 10% of all inputs onto the piriform, so if 10 individual

odors are paired with reward, then 65% of all piriform inputs will be strengthened. If the

animal now experiences a novel odor, this odor will activate 65% of strengthened piriform

inputs which have been previously paired with reward, therefore driving learned behaviors

even when the behavior is not desired. The overlap problem is mitigated by having learning

take place in multiple downstream areas, each of which drives a different behavior, such

as licking or escape. In this scenario, piriform outputs are strengthened onto a particular

downstream area to drive a specific behavior, and over-generalization would only occur

if many piriform ensembles are strengthened onto the same downstream area. However,

if multiple piriform ensembles are each paired with a different downstream area to drive a

different behavior, over-generalization will not exist. In conclusion, the avoid false general-

ization and to preserve discriminability, learning should occur downstream of the piriform.

Indeed, in our chronic imaging experiments, we observe that piriform ensembles are not

modified by learning.

6.2 OFC Provides a Blank Slate for Learning New Tasks

We have shown that the entrainment of piriform inputs can drive a representation of ex-

pected value in the OFC. How could piriform inputs, which encode a representation of
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odor identity, transform into a cognitive representation of expected value in the OFC? The

question can be rephrased as how unique odor ensembles in the piriform can converge and

potentiate the same set of OFC neurons during learning. In our model, we first make the

simplifying assumption that OFC neurons receive sufficiently large and random collections

of piriform inputs such that every odor will activate a subset of piriform neurons. For in-

stance, odors activate 10% of the entire piriform, and if 100 piriform inputs impinge onto

an OFC neuron, then every odor will on average activate 10 of those piriform inputs. Con-

sequently, piriform projections from distinct odor ensembles could then be independently

reinforced onto the same OFC neuron. Therefore, having random piriform projections onto

the OFC offers a simple mechanism that allows distinct odor ensembles to activate the same

set of OFC neurons. While we have assumed that direct piriform projections are responsible

for learning in the OFC, indirect pathways can also accommodate a random connectivity

profile. For instance, anatomical studies have also revealed piriform projects indirectly to

the OFC through the mediodorsal thalamus (Mitchell 2015).

We observe that CS+ responsive neurons constitute 35-40% of the entire OFC popula-

tion. If learning was Hebbian, then we have to assume that 35-40% of the OFC receives

water US input, and we also would predict that almost all US-responsive neurons acquire

a CS+ response. However, the majority of US responsive neurons are not CS+ responsive,

so the mechanism underlying the potentiation of CS+ responses in the OFC is unlikely to

be Hebbian. An alternative hypothesis is that the potentiation of piriform inputs may also

be gated by neuromodulation, such as by dopamine input. Only specific subsets of OFC

neurons may be receptive to neuromodulators to account for the fact that only 35-40% of

the OFC is CS+ responsive after learning. Frontal lobes indeed receive strong projections
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from dopaminergic (DA) neurons in the midbrain (Goldman-Rakic et al. 1992; Swanson

1982). Specifically, dopamine release in the OFC has been linked to associative reward

processing and reward-related behavior (Walker et al. 2009; Cetin et al. 2004). Therefore,

the coincidence of neuromodulation and active piriform inputs may drive the formation of

an CS+ ensemble in a select subset of OFC neurons. Once dopamine has reinforced piri-

form inputs onto the OFC, the activation of piriform inputs may be sufficient to drive OFC

activity absent neuromodulation.

What mechanism underlies OFC sensitivity to state and context? The activity of these

neurons must gate OFC activity in response to learned sensory CS+ inputs. One potential

mechanism would be to require that OFC neurons behave like ’AND’ gates, where output

activity is only generated by the coincident activation of all inputs: motivational inputs

(internal state), contextual inputs (reward is predicted by the CS+ in this given context),

and learned sensory inputs. If any of the required inputs are inactive, CS+ neurons in the

OFC will not fire. The regulation of internal state may be accommodated by inputs from

the periaqueductal gray, basal forebrain and brainstem nuclei, and hypothalamic regions,

all of which send projections to the OFC (Cavada et al. 2000). Likewise, contextual inputs

may be sent to the OFC through its connections with other prefrontal and associative areas.

Future work should be directed to understand the circuitry underlying the gating of OFC

activity.

Once the task has been learned with a single odor, CS+ neurons in the OFC gradually

vanish, and the OFC remains silent even when mice encounter novel odors they haven’t

previously experienced. Because OFC responses vanish, learning must be transfered onto

other brain areas for behavioral performance to be maintained. Why would a learned rep-
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resentation ever vanish? It seems counter-intuitive that a brain area should lose what it has

learned only to waste resources transferring knowledge to other brain areas. However, the

process of forgetting may allow the OFC to start again as a clean slate to learn novel tasks

without having prior knowledge interfere with learning in a new context. If the OFC did

not forget or lose what it has learned, prior learning may accumulate and erroneous recall

may interfere with the learning of new task parameters. Therefore, to continually learn new

tasks throughout an animal’s lifetime, the OFCmay function within a wider learning circuit

as a playground where experimentation and hypothesis testing takes place. Once it solves

a task, it may unload what it has learned to storage units located elsewhere to free up space

to learn new tasks.

Many studies point to the transfer of learning from the hippocampus to the consolidation

of long-term memories in the cortex (Zola-Morgan and Squire 1990; Bontempi et al. 1999;

Kitamura et al. 2017). This framework suggests that every new memory is first cached in

the hippocampus before stored within the cortex. However, while our results are similar to

the idea that short and long term memory formation are accommodated by different brain

areas, there is a key difference. Once task structure has been learned, the OFC no longer

serves as a relay, and information flows directly to other brain regions to be learned and

stored. OFC functions more like a teacher that configures the neural circuitry of other brain

regions such that they are learn independently to acquire new associations.
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6.3 mPFC Stores Task Information and Drives Behavior

Downstream

When OFC activity is robust, mPFC is inactive; when OFC activity degrades, mPFC activ-

ity grows robust. As predicted by these imaging experiments, OFC is only important during

initial learning, and mPFC is only important after task acquisition. While these experiments

strongly suggest that the OFC transfers information to the mPFC, this connection has not

been made explicit. Further experiments need to be conducted to demonstrate that OFC

connects directly to the mPFC. Additional experiments should be done to ask 1) whether

perturbations to the OFC representation affects the acquisition of a learned representation

in the mPFC, and conversely, 2) whether perturbing the mPFC representation causes the

OFC to retain its learned representation for longer, as it cannot use the mPFC to store what

it has learned.

Assuming the OFC transfers learning to the mPFC, the mPFC does not create an exact

replica of the learned OFC representation. Its representation is simpler in that neurons no

longer tile the task duration but respond homogeneously with similar dynamics and at odor

onset. However, it is also more complex in that we observe an unique CS- representation

that is non-overlapping with that of the CS+. The emergence of a CS- ensemble is particular

to the mPFC; we did not observe CS- responses during in piriform, OFC, or the BLA.

What does this representation encode? It likely represents a negative value signal. Once

CS+ odors are learned, the animal develops an expectation that at least some odor predicts

reward. This expectation is met with disappointment if an odor now informs mice that no

reward will be delivered. Therefore, the emergence of an expectation should dictate the
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emergence of a CS- representation that signals negative value.

The big question, however, is why the CS- representation is even necessary. In other

words, what function does this representation serve that a CS+ representation by itself can-

not already accomplish? Conceptually, our task has only two possible actions, to lick and

to not lick. If the default behavior is to not lick, which is what mice do prior to learning,

then a CS+ representation that drives licking is sufficient to accomplish this task. Indeed,

if we assume that mice do not lick in response to any novel odor, then a CS- ensemble that

drives lick suppression is never necessary. However, mice change their default behaviors

because they generalize past knowledge to lick to odors it has not previously encountered.

In this regime, the CS+ representation that signals high value serves no purpose as it does

not change the animal’s default response. Rather, a CS- representation is necessary to sup-

press generalized licking to all odors. Therefore, if the default action is liable to change,

the animal may require that CS+ and CS- ensembles to drive licking and suppression of

licking. This may be why the mPFC must bind both CS+ and CS- odors to specific actions

through non-overlapping ensembles.

There has to be a mechanism in place that allows prior learning to remain intact. An-

other value of having a CS- ensemble is that during extinction learning, the animal does not

have to unlearn the CS+ representation. If during extinction learning, reward is no longer

paired with a CS+ odor, the animal needs to suppress licking. The emergence of a CS- rep-

resentation that suppresses licking allows the CS+ representation to remain intact without

being unlearned. If the animal now has to learn again to lick to new CS+ odors, the CS+

representation can immediately inform the animal to start licking without having to learn

afresh.
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How could a representation of CS- odors be generated in the mPFC? One hypothe-

sis is that there exists distinct sets of glutamatergic neurons in the mPFC that responds to

different neurotransmitters. Receipt of reward releases neurotransmitters that signal over-

expectation, and this will potentiates sensory inputs onto one set of mPFC neurons, forming

the CS+ ensemble. Conversely, omission of reward releases neurotransmitters that signals

under-expectation, or disappointment, and this will potentiate sensory inputs onto a non-

overlapping set of mPFC neurons, forming the CS- ensemble. Neurotransmitter release that

signals positive and negative reward prediction error may be transmitted through dopamine

neurons in the VTA (Schultz 2001).

6.4 BLA’s Role in Learning

The existence of distributed representations in the prefrontal cortex raises the question of

whether there are multiple redundant pathways for learning elsewhere in the brain. Indeed,

further imaging in another associative area, the BLA, has revealed a CS+ representation that

is stable, low dimensional, and consistent from trial-to-trial. However, BLA silencing does

not impair any observable behavioral changes during the learning of a simple appetitive as-

sociation. Whymust the brain expend resource to encode a learned representation if it is not

necessary for learning or task performance? One potential reason is that these representa-

tions encode task variables that are not present within our simple appetitive association task.

Second, each area may seem redundant but may be optimized to perform functions that are

only somewhat overlapping. Indeed, all three regions, the BLA, OFC, and mPFC, encode

value in different ways. Therefore, within any learning task, the brain may take a conser-
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vative approach and recruit the activation of multiple redundant pathways, and whichever

pathway that learns the task the fastest will be used to dictate behavior downstream.

Moreover, there must exist additional learning pathways that are independent of the

OFC, mPFC, and BLA. The deficits that we observed during OFC and mPFC silencing

were always relegated to a subset of animals. For instance, when we silenced the OFC

during discrimination training, 3/5 mice could not learn discrimination training even after

10 days of training, whereas 2/5 mice were unimpaired. The heterogeneity of these results

suggest that mice that are unimpaired may be learning the association through a pathway

that is independent of OFC, mPFC, and BLA activation. Such a brain area may reside in

the striatum, mid-brain, thalamus, and motor regions.

6.5 Model of Circuit

A simple model that illustrates how learning can be transferred from a complex task rep-

resentation in the OFC to a simple representation in the mPFC. During initial learning,

piriform inputs are strengthened onto the OFC, forming the CS+ representation. This rep-

resentation allows a downstream region X (analogous to the VTA) to form an association

between the cue and reward. After forming the association between odor and reward, region

X projects back to the mPFC and releases two kinds of neurotransmitters, one signaling a

positive value and the other a negative value. These neurotransmitters gate plasticity in

distinct and non-overlapping sets of mPFC neurons, allowing non-overlapping CS+ and

CS- ensembles to emerge in the mPFC. For example, when the US is delivered after a CS+

odor, neurotransmitter signaling positive value is released onto the mPFC, and coincident
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piriform activation strengthens active synapses and drives the emergence of the CS+ ensem-

ble. Conversely, when US is not delivered, opposing neurotransmitters signaling negative

value drives the emergence of a CS- ensemble. We note that a negative value signal is only

present once the animal has formed an expectation that some odors predict reward. Once

the mPFC representation is robust, the OFC representation is not necessary anymore and

therefore vanishes.

6.6 Conclusion

In summary, we have delineated a circuit whereby a sensory representation of odor identity

is transformed into a representation of learning in multiple downstream brain regions. In

particular, the representation in the OFC is necessary for learning the task structure, and this

is transfered onto the mPFC and other brain regions after task structure has already been

learned. The simplicity of the olfactory systemmakes it an invaluable system to understand

how animals learn to associate sensory stimuli with specific outcomes. Continued inves-

tigation of associative circuitry downstream of olfactory centers will impact tremendously

on our understanding of the neural origins of learned behavior.

190



Chapter 7

Methods

General

Vglut2-ires-cre mice (016963, Jackson Laboratories) were crossed to Ai96 (floxed-STOP-

GCaMP6s, 024106, Jackson Labs). Adult female and males were used in all imaging and

optogenetic experiments. Syn1-cre mice (003966, Jackson Laboratories) were crossed to

Ai96. Adult female and males were used in bLA imaging experiments. All animals were

group housed under a normal 12 hour light/dark cycle with littermates until surgery.

For all experiments, mice underwent surgeries when they were 8 - 12 weeks old. Mice

were anesthetized with ketamine (100 mg/kg) and xylazine (10mg/kg) through intraperi-

toneal injection and then placed in a stereotactic frame. Ophthalmic ointment (Puralube)

and a topical anesthetic (2% Lidocaine) was applied during surgeries. Body temperature

was stabilized using a heating pad attached to a temperature controller. Following surgery,

mice received buprenorphone (.05 - .1 mg/kg) subcutaneously every 12 hours over the next

three days. Mice recovered for at least 4 weeks before the start of any imaging or optoge-

netic experiment.

For learning experiments, mice were water-restricted (water bottles taken out of cage)

and was delivered water (water bottle put back into a cage) for 4-5 minutes everyday. Be-

havioral training began when mice weighed less than 90% of free drinking weight ( 3 days
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for all experiments). Mice were also weighed everyday to ensure good health. No health

problems related to dehydration arose at any point.

All experimental procedures were performed in accordance with the guide of Care and

Use of Laboratory Animals (NIH) and were approved by the Institutional Animal Care and

Use Committee at Columbia University.

Virus Injection

The UNC Vector Core packaged all viruses (AAV-CamKII-Jaws-KGC-GFP-ER2, AAV-

Syn-ChrimsonR-tdTomato). Virus injections were administered unilaterally (for activation

experiments) or bilaterally (for silencing experiments) targeting OFC or BLA. Injection

coordinates used were all relative to bregma. For Piriform: AP, +2.20mm; ML , ±1.2mm;

DV, -3.35mm. For OFC: AP, +2.40mm; ML , ±1.0mm; DV, -2.40mm. For BLA: AP, -

1.60mm; ML , ±3.3mm; DV, -4.90mm. For mPFC: AP, +2.05mm; ML , ±0.40mm; DV,

-2.05mm. All virus injections were diluted to 1/3 of original titer and 300 nL was injected

per side for both unilateral and bilateral viral injections.

Optogenetics

For optogenetic experiments, 200 um core fibers (ThorLabs) were implanted bilaterally,

approximately .3 mm above GRIN lens implantation coordinates. OFC coordinates: AP,

+2.40mm; ML ±1.00mm; DV, −2.05mm. BLA coordinates: AP, -1.60mm; ML ±3.30mm;

DV, −4.60mm. mPFC coordinates: AP, +1.65mm; ML ±0.40mm; DV, −1.70mm.

For photo-activation manipulations in Chrimson or control mice, the LED (660 nM)
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was turned on for 10 Hz pulses. For photo-inhibition experiments in Jaws or control mice,

laser (660 nM, CrystalLaser) did not pulse. The power was adjusted such that the power

coming out of the fiber tip was approximately 3-4 mW for activation experiments, and 8-10

mW for inhibition experiments. The same trial structure was employed except that laser

was turned on 2 seconds prior to odor delivery and lasted for two seconds after US delivery,

for a total of 9 seconds. Laser was also turned on for 9 seconds for CS- trials, except US

was never delivered.

For experiments involving simultaneous imaging and photo-activation or inhibition, the

activation wavelength (660 nM) and LED power that we used neither bleached GCaMP lev-

els nor bled through the collection filters. To confirm that the optical fibers were working

properly during the experiment, fiber implants were extracted immediately after perfusion

and output power levels at the fiber tip was tested to confirm the fibers were properly trans-

mitting LED light. As exclusion criteria, we only included mice where viral expression

within the target area of interest was robust.

Lens Implantation

First, a 1-1.5mm round craniotomy centered on the implantation coordinate was made us-

ing a dental drill. Dura and .5mm - 1mm of underlying cortex was then aspirated. Blood

was washed off at the top constantly through aspiration. A .5mm diameter microendoscope

(Grinch GmBH) was then inserted slowly. Lens coordinates are identical to the viral injec-

tion coordinates. After implantation, the microendoscopes were fixed in place using dental

cement (Metabond). Usually, about 1-2 mm of lens stuck outside of the skull. To pro-
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tect the lens on top from damage, we put a metal enclosure surrounding it (Dytran thread

adapter) and then covered the enclosure with an acorn nut (Amazon Supplies). Lastly, a

custom-made head plate (stainless steel) was attached to the skull during surgery to allow

for head-fixation.

Head-fixed Behavior

Mice were head-fixed on a large Styrofoam ball, where they are free to only run forwards

and backwards. All mice were habituated for at least one day prior to all experiments.

During training, white noise was played tomute the sound of laser scanning. white imaging,

mouse behavior was visualized through an UV camera (FlyLight). Water delivery was

driven by a quiet solenoid-controlled valve (Lee Instruments) and delivered through a lick

port. Licking was collected through a capacitive touch sensor (Phidgets) attached to the

same lick port. All data was collected at 1000 Hz. Input/output and acquisition was all

done through custom MATLAB scripts.

Odors

Odor delivery was driven by a custom-made olfactometer. All olfactometer parts, including

valves and manifolds, were obtained from Lee Instruments. Air (Medical air) was streamed

at 900 mL / minute, and split into two equal lines carrying 450 mL / minute. One line was

directed towards the mouse’s nose. Air flows perpendicular to the nose through a teflon

tube, and a narrow slit was made in the opening at where the mouse’s nose was located for

odors to be detected. The other line routes to the PID (photo-ionization device) to mea-
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sure odor ionization, a proxy for odor identity and concentration. All odors are diluted

in mineral oil at concentrations of 2% (100 uL odor / 5000 uL solvent). All odors were

obtained through Sigma-Aldrich. Odors used were: isoamyl acetate, methyl salicylate,

pinene, 4-methylthiazole, peanut oil, 2-phenylethanol, limonene, eucalyptol, geranyl ac-

etate, fenchone, benzaldehyde, octanol, hexanol. In most experiments, methyl salicylate

and pinene served as the CS+ odors, and eucalyptol and limonene served as CS-. Odor-

reward contingencies were reversed in reversal experiments.

Trial Structure

Before discrimination training, mice were trained to lick to the water port by placing the

water port extremely close to the mouth, with water delivered for on average 2-3 trials.

After, the lick port was moved further away such that there was spatial separation between

skin and the delivered water drop. Mice usually learned to lick to collect water when water

was delivered in such a manner in about 5 water deliveries. Water detection is presumably

accommodated by fine hairs and whiskers located below the mouth. After this, training

began. Baseline licking for most mice was extremely low, so all mice had to learn to lick

to CS+ odors instead of suppressing to CS- odors.

All trials were as follows: 5 seconds baseline, 2 seconds odor, 3 seconds delay, and

if a trial is a CS+, water is given. Then, there is an intertribal interval of 25 seconds.

During pre-training, only one CS+ was given. On average, 40-60 pre-training trials was

given in a day. During discrimination training, there were 5 different conditions: 2 CS+

odors that predicted water delivery, 2 CS- odors, and US trials where water was delivered
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without being preceded by odor. Cues were delivered in a pseudorandom manner. On

average, 12-15 trials of each of the 5 conditions were given per day of training. In initial

pilot experiments, imaging during training on consecutive days caused slight bleaching in

imaging planes. Therefore, most imaging experiments were conducted every other day to

minimize bleaching.

Imaging

A two-photon microscope (Bruker Instruments, formerly Prairie Technologies) was

equipped with the following to allow imaging of deep brain areas in vivo: a tunable mode-

locked 2-photon laser (Coherent Laser, laser set to 920 nm, 100 fs pulse width); a GaAsp-

PMT photo-detector with adjustable voltage, gain, and offset feature; a single green/red

NDD filter cube (580 dcxd dichroic, hq525/70 m-2p bandpass filter); a long working dis-

tance 10X air objective with 0.3 NA (Olympus).

A 260 pixel X 260 pixel region of interest ( 400 um X 400 um FOV) was chosen, with

1.6 us dwell time per pixel. This allowed for image collection at 4.5 Hz. Prior to imaging,

the imaging plane (z-axis) that was used from previous imaging days was located. This

was done by using the top of the GRIN lens as the reference location. Sample image stacks

of planes at every 10 um intervals was taken on a new imaging day. The mean intensity

image of each image stack was registered to the previous day’s image stack, and the best

registered plane was chosen for subsequent imaging. During each odor trial, two-photon

scanning was triggered immediately at the start of the baseline period (5 seconds prior to

odor delivery), and a 19 second (75 frames / trial) video was collected for each trial. Data

196



was acquired using custom acquisition software (Bruker Instruments).

Image Analysis

Image analysis was all performed using custom MATLAB scripts. First, images were mo-

tion corrected using sub-pixel image registration. Imaging sessions are usually 4-7 thousand

frames. Motion correction was first applied within each trial (75 frames per trial), and then

it was applied across trials by registering the mean intensity image of different trials. In

some FOVs, we often observe small fluorescence changes occurring in large areas (> 100

um X 100 um) that are presumably due to calcium transients in out-of-focus planes. We

thus got rid of large diffuse calcium fluctuations through a spatial low-pass Gaussian filter

(length constant, 50 um).

For ROI identification, we used a MATLAB package for calcium transient analysis

based on nonnegative matrix factorization (NMF). The algorithm is specialized for sepa-

rating signals from overlapping structures by relying on the fact that signals from different

structures often have different time signatures. This algorithm also allows for removal of

activity from sources such as axonal and dendritic processes. ROIs that corresponded to

neurons were selected, and neuropil and other signals that do not appear to correspond to

neural cell bodies were deleted. Sometimes, the algorithm will classify distinct neurons

lying in close proximity as the same neuron, in which case the spatial filters were split

manually. On average, 70-100 neurons were extracted, and 10-20 were deleted in a given

mouse. Traces were extracted using selected regions of interest, and delta F / F was com-

puted using baseline extracted using NMF.
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To register neuronal identities across multiple days of imaging sessions, we first used

rigid body rotation and translation (MATLAB rigid body registration and sub pixel regis-

tration) on the mean intensity averages of image stacks collected on different days. We

then applied the angular rotation and translation to both the image stacks and the ROIs on

different days to register across days. For instance, 5 different imaging days, day 3 was

used as a reference, and all image stacks on other days were registered relative to day 3.

After, we then manually took the union of all unique and spatially non-overlapping cells

identified in all imaging days to produce a large set of spatial filters. Neuronal cell counts

at this stage usually exceeded standard single-day cell count results by a multiple of 1.2 -

1.4.

Once done, we then back-applied these spatial filters to the original imaging data from

each data. Small warping occurs in the brain across different days. As a result, different

ROIs will move in different directions, but the shapes of each ROI is well-preserved across

days. Back-application of spatial filters involves first morphologically dilating the spatial

filter and searching for the best spatial filter within this dilated area. Thus, one can use

a spatial filter that corresponds to a cell on a day’s imaging to derive a new, updated filter

corresponding to the outline of a cell on a different day provided that the cell has not changed

its shape or location by a reasonable threshold. Finally, we then visually assessed whether

the back-applied spatial filters corresponded to the same cell on different days. Sometimes,

the back-application process results in spatial filters that do not correspond to the same cell

on different imaging days. Commonly, while the center of mass of the back-applied spatial

filters is fixed across days, they appear to correspond to the outlines of different cells. Thus,

we cannot use any metric based of center of mass to exclude cells. Moreover, metrics based

198



on cross-correlation also did not agree with visual inspection. Thus, we simply looked at the

shapes of the spatial filters while being blind to the fluorescence data and spatial location of

the cell, and picked only cells whose spatial filters on multiple days appeared to correspond

to the same cell outline. This usually led to the exclusion of 20% of all ROIs from the

master list when aligning across 4 or more imaging days.

Optrode Experiments

NeuroNexus optrode probes with 32 sites and 200 um core fiber was used to assess ef-

ficacy of Chrimson inhibition and Jaws excitation using 660 nM light. Recordings were

performed 4 weeks after virus injection. On recording days, mice were anesthetized with

ketamine/xylazine and were head-fixed to the recording stage. On the day of recording, the

hole used for the virus injection was enlarged using a drill and the dura was removed. The

optrode was then fixed onto a micro manipulator and lowered into the brain. The hole was

then sealed with liquid agar (1.5%) applied at body temperature.

For Jaws inhibition experiments, we lowered optical probes down to 2-3 mm below

bregma towards the OFC and performed a series of inhibition recordings with varying

power levels (.5 mW, 1 mW, 2 mW, 5 mW, 10 mW, 15 mW) at fiber tip. At each power

level, laser was turned on for 10 seconds with an ITI of 30 seconds for a total of 15 consecu-

tive blocks. This same protocol was used for Chrimson activation experiments, except that

optical fibers were lowered down to 3-4 mm below bregma to target the anterior piriform

cortex, and the laser was pulsed at 5 Hz.

After recording, cells were sorted using KlustaKwik using a EM algorithm for
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maximum-likelihood fitting of a mixture of arbitrary-covariance Gaussians. Manual cor-

rection of automatic clustering was then subsequently done with KlustaViewa. This was

described in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817237/. Data was then an-

alyzed by aligning and averaging light on periods and comparing spike rates to periods of

no light.

Histology

Mice were killed by transcardial perfusion with 10 mL PBS followed by 10 mL 4%

paraformaldehyde. Brains were extracted and coronal sections were cut on a vibratome.

The slices were labeled with far-red neurotrace to label neuronal cell bodies. All images

were taken using a Zeiss LSM-710 confocal microscope system. Histology was done to

confirm locations of implanted lenses, implanted optical fibers, and level of GCamP6, Jaws,

and Chrimson expression.

Data Collection

The number of mice that are required for each experiment is generally 4-6 per group. In-

vestigators were not blind to either imaging or ontogenetic experiments. For imaging ex-

periments, mice were excluded if there were less than 20 neurons within the field of view

or if the lens was not placed directly above region of interest (n=2, all conditions). For op-

togenetic experiments, mice were excluded if histology revealed low expression within the

region of interest, if optic fibers were misplaced, or if optic fibers did not transmit excitation

light properly (n=0, head-fixed).
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Data Analysis

Statistically Significant Response

For each cell, we pooled all the DF/F values of all trials during the baseline period to form

a reference distribution. This was then compared to the distribution formed by pooling

DF/F values at a given frame after odor onset with a moving average of 3 frames. A Mann-

Whitney U test was performed on the reference and test distributions to obtain a P-value.

Thus, a P-value was obtained for every frame after odor onset. A cell was deemed signifi-

cantly active if the P-value was < 0.01 for at least 8 consecutive frames after odor onset.

Metrics for Significance and Selectivity

Quantification of a significant odor response in piriform cortex depended upon satisfying

two criteria, that it must be greater than 0.1 DF/F and also must be statistically significant

(P < 0.01). Many odor responses in the piriform are robust and have high signal, often

above 0.3 DF/F. While odor responses that are much lower in amplitude (< 0.1 DF/F) are

still significant statistically, they are less consistent trial-to-trial and are often not locked

to odor onset. We therefore required that response be greater than 0.1 DF/F to be consid-

ered a significant odor response. Evoked responses in OFC, BLA, or mPFC were often

much weaker, with statistically significant responses within the range of 0.05 – 0.1 DF/F.

Therefore, we did not use an absolute threshold on DF/F for any region other than piriform.

In piriform, we often observe cells that robustly respond to odor A with >80% DF/F,

and odor B with 10% DF/F. While both responses are statistically significant compared to

baseline, response to Awasmuch greater than B.We thus interpret this cell to be exclusively
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selective for odor A. Therefore, for analysis of odor selectivity in piriform, we require that

significant responses satisfy the additional criterion that the odor response has to be greater

than 0.1 DF/F and also greater than 20% of the maximum odor response.

Using this criterion, a cell’s response to the 4 tested odors can then be subdivided into

two categories, selective responders and non-selective responders. Selective neurons re-

spond to a subset of all odors, whereas non-selective neurons respond to all odors. We

observe that on average, 3% of neurons were non-selectively responsive to all 4 tested

odors with similar amplitude profiles. Like before, we discarded non-selective responders

in the analysis of piriform odor selectivity because their odor tuning cannot be accounted

by sparse inputs from the olfactory bulb (Stettler and Axel 2009).

Response Consistency Across Days

We use Union(A,B) / Max (A,B) to assess overlap between two neuron ensembles. For

instance, if 50 cells are in ensemble A, and 100 cells are in ensemble B, and 40 cells are

active on both days, this gives an overlap of 40 / 100 = 0.4 between the two ensembles.

We reason that this metric is fairer than othermetrics, such as the Szymkiewicz-Simpson

coefficient, defined as Union (A,B) / Min (A,B), to assess overlap because these metrics

severely overestimates overlap if the number of cells between days differ significantly. In

the above example, this alternative metric would produce a value of 80% overlap, which

we believe is a severe over-estimation.

This metric was used to assess 1) the consistency of water-responsive cells across con-

secutive days (US-responsive cells on Day X and Day X+1), 2) the consistency of odor-

responsive cells across consecutive days (Odor-responsive cells on Day X and Day X+1),
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and 3) the overlap of responsive cells to different odors on the same day (odor A and odor

B on Day X)

Quantifying Response Onset, Variability, Power

For all cells deemed to be significantly responsive to any CS+ odor based on previously

explained criteria, we marked the onset of the significant response to be the first frame

where the P-value was less than 0.01 relative to baseline. The onset times of each significant

CS+ response in a given neuron were treated independently and were pooled together. A

median onset time was then derived from this distribution. This was then averaged across

all days after learning.

DF/F values for all trials, centered on a given frame with a time window of 3 frames,

was pooled together to form a distribution, and the CV (coefficient of variation, or standard

deviation/mean) was calculated for each frame. The minimum CV value between odor

onset and water onset was used to assess the trial-by-trial variability of the odor response.

All significant responses in all neurons were pooled together to form a distribution of CV

values. The median CV was then derived from this distribution, and then averaged across

all days after learning.

Power is defined as averaging the absolute value of theDF/F across the entire population

for each condition.

Decoding

Binary linear decoders were constructed in MATLAB. We concatenated the DF/F values

between odor onset and water onset for all neurons to form a population activity vector
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of a single odor trial. We trained decoders to discriminate between the population activity

vectors of all pair-wise odor conditions. We determined the error rate as the mean error

rate over a fivefold cross-validation. For cross-validation we split all the trials (10-15 trials

per odor condition per imaging session) into 5 equally sized blocks. We used 4 blocks for

decoder training and 1 for testing.

We also applied the same method to decode between the 4 odor conditions at every

imaging frame. We concatenated DF/F values with a moving average of 3 frames to form a

population activity vector centered at a given frame. We then trained decoders to discrim-

inate between the population activity vectors of two odors at every frame. This approach

revealed when the population activities of different odors were most separable following

odor delivery.

We also assessed whether licking was encoded by asking whether trials in which mice

did not lick to the CS+ odor (false negative trials) were more similar to trials in which mice

licked to CS+ odor (true positive) or to trials in which mice withheld licking to the CS-

odors (true negative). We trained decoders to distinguish between CS+ lick trials and CS-

non-lick trials using the above approach and then tested with CS+ non-lick trials. When

making comparisons across decoders involving unequal numbers of cells…
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