6,438 research outputs found

    Robust moving horizon H∞ control of discrete time-delayed systems with interval time-varying delays

    Get PDF
    In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC) is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI) based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method

    Online Discrimination of Nonlinear Dynamics with Switching Differential Equations

    Full text link
    How to recognise whether an observed person walks or runs? We consider a dynamic environment where observations (e.g. the posture of a person) are caused by different dynamic processes (walking or running) which are active one at a time and which may transition from one to another at any time. For this setup, switching dynamic models have been suggested previously, mostly, for linear and nonlinear dynamics in discrete time. Motivated by basic principles of computations in the brain (dynamic, internal models) we suggest a model for switching nonlinear differential equations. The switching process in the model is implemented by a Hopfield network and we use parametric dynamic movement primitives to represent arbitrary rhythmic motions. The model generates observed dynamics by linearly interpolating the primitives weighted by the switching variables and it is constructed such that standard filtering algorithms can be applied. In two experiments with synthetic planar motion and a human motion capture data set we show that inference with the unscented Kalman filter can successfully discriminate several dynamic processes online

    The Changing Role of the Library Faculty in Teaching and Learning

    Get PDF

    Foraging swarms as Nash equilibria of dynamic games

    Get PDF
    Cataloged from PDF version of article.The question of whether foraging swarms can form as a result of a noncooperative game played by individuals is shown here to have an affirmative answer. A dynamic game played by N agents in 1-D motion is introduced and models, for instance, a foraging ant colony. Each agent controls its velocity to minimize its total work done in a finite time interval. The game is shown to have a unique Nash equilibrium under two different foraging location specifications, and both equilibria display many features of a foraging swarm behavior observed in biological swarms. Explicit expressions are derived for pairwise distances between individuals of the swarm, swarm size, and swarm center location during foraging. © 2013 IEEE

    Regenerator Location Problem and survivable extensions: A hub covering location perspective

    Get PDF
    Cataloged from PDF version of article.In a telecommunications network the reach of an optical signal is the maximum distance it can traverse before its quality degrades. Regenerators are devices to extend the optical reach. The regenerator placement problem seeks to place the minimum number of regenerators in an optical network so as to facilitate the communication of a signal between any node pair. In this study, the Regenerator Location Problem is revisited from the hub location perspective directing our focus to applications arising in transportation settings. Two new dimensions involving the challenges of survivability are introduced to the problem. Under partial survivability, our designs hedge against failures in the regeneration equipment only, whereas under full survivability failures on any of the network nodes are accounted for by the utilization of extra regeneration equipment. All three variations of the problem are studied in a unifying framework involving the introduction of individual flow-based compact formulations as well as cut formulations and the implementation of branch and cut algorithms based on the cut formulations. Extensive computational experiments are conducted in order to evaluate the performance of the proposed solution methodologies and to gain insights from realistic instances. (C) 2014 Elsevier Ltd. All rights reserved

    IMPACT ON PRESENTEEISM OF THE CONSCIENTIOUSNESS TRAIT: A HEALTH SECTOR CASE STUDY

    Get PDF
    Our purpose in this study was to examine the relationship between presenteeism and the conscientiousness trait as an individual-level predictor of employee health and productivity. We used convenience sampling to recruit 168 Turkish health employees, who completed measures of conscientiousness and presenteeism. The findings revealed that in a work outcomes context, the conscientiousness trait was positively related to the noncompletion of work dimension of presenteeism, the focus of which is on work outcomes. However, the relationship between the conscientiousness trait and the distraction dimension of presenteeism was nonsignificant. Our findings have implications for managers and organizations, who should be proactive in taking preventative precautions to mitigate the possible negative effects of presenteeism behaviors
    corecore