9 research outputs found

    Inverse gene expression patterns for macrophage activating hepatotoxicants and peroxisome proliferators in rat liver

    Get PDF
    Abstract Macrophage activation contributes to adverse effects produced by a number of hepatotoxic compounds. Transcriptional profiles elicited by two macrophage activators, LPS and zymosan A, were compared to those produced by 100 paradigm compounds (mostly hepatotoxicants) using cDNA microarrays. Several hepatotoxicants previously reported to activate liver macrophages produced transcriptional responses similar to LPS and zymosan, and these were used to construct a gene signature profile for macrophage activators in the liver. Measurement of cytokine mRNAs in the same liver samples by RT-PCR independently confirmed that these compounds are associated with macrophage activation. In addition to expected effects on acute phase proteins and metabolic pathways that are regulated by LPS and inflammation, a strong induction was observed for many endoplasmic reticulum-associated stress/chaperone proteins. Additionally, many genes in our macrophage activator signature profile were well-characterized PPARa-induced genes which were repressed by macrophage activators. A shared gene signature profile for peroxisome proliferators was determined using a training set of clofibrate, WY 14643, diethylhexylphthalate, diisononylphthalate, perfluorodecanoic acid, perfluoroheptanoic acid, and perfluorooctanoic acid. The signature profile included macrophage activator-induced genes that were repressed by peroxisome proliferators. NSAIDs comprised an interesting pharmacological class in that some compounds, notably diflunisal, co-clustered with peroxisome proliferators whereas several others co-clustered with macrophage activators, possibly due to endotoxin exposure secondary to their adverse effects on the gastrointestinal system. While much of these data confirmed findings from the literature, the transcriptional patterns detected using this toxicogenomics approach showed relationships between genes and biological pathways requiring complex analysis to be discerned.

    GPR139, an Orphan Receptor Highly Enriched in the Habenula and Septum, Is Activated by the Essential Amino Acids L-Tryptophan and L-Phenylalanine s

    Get PDF
    ABSTRACT GPR139 is an orphan G-protein-coupled receptor expressed in the central nervous system. To identify its physiologic ligand, we measured GPR139 receptor activity from recombinant cells after treatment with amino acids, orphan ligands, serum, and tissue extracts. GPR139 activity was measured using guanosine 59-O-(3-[ Sequence alignment revealed that GPR139 is highly conserved across species, and RNA sequencing studies of rat and human tissues indicated its exclusive expression in the brain and pituitary gland. Immunohistochemical analysis showed specific expression of the receptor in circumventricular regions of the habenula and septum in mice. Together, these findings suggest that L-Trp and L-Phe are candidate physiologic ligands for GPR139, and we hypothesize that this receptor may act as a sensor to detect dynamic changes of L-Trp and L-Phe in the brain

    Additional file 1: Figure S1. of Metabolomic biosignature differentiates melancholic depressive patients from healthy controls

    No full text
    Effect of storage time correction. Figure S2. The distributions of original and imputed metabolite features: Glyoxylate ratio, Caffeine ratio, Elaidicacid ratio and Indole 3 propionic acid ratio. Figure S3. QQ plots of the p-values of the two-sample t-tests on raw features, k-means and hierarchical clustering representatives. Table S1. Classification performance obtained by Random Forest on metabolite data using the standard undersampling technique. Table S2. Classification performance obtained by Support Vector Machines on metabolite data using the standard undersampling technique. Table S3. Top 30 individual metabolic features selected by different feature selection methods. Table S4. Top 30 individual metabolic features selected by different feature selection methods. Table S5. Top cluster-representatives (K-means) selected by different feature selection methods. Table S6. Top cluster-representatives (hierarchical clustering) selected by different feature selection methods. Table S7. Top cluster-representatives (hierarchical clustering) selected by different feature selection methods. (DOCX 812 kb
    corecore