14 research outputs found

    Characterization and prediction of permanent deformation properties of unbound granular materials for Pavement ME Design

    Get PDF
    The objective of this study is to characterize and predict the permanent deformation properties of unbound granular materials (UGMs) for Pavement ME Design. First, laboratory repeated load triaxial (RLT) tests are conducted on the UGMs from 11 quarries in Texas to measure the permanent strain curves. The shakedown theory is applied to evaluate the permanent deformation behavior of the selected UGMs. It is found that using Werkmeister's criteria to define the shakedown range boundaries is not suitable for the selected UGMs. Under this circumstance, new criteria are proposed to redefine the shakedown range boundaries for the flexible base materials in Texas. The new criteria are consistent with the current Texas flexible base specification in terms of aggregate classification. Second, the mechanistic-empirical design guide (MEPDG) model is used to determine the permanent deformation properties of the selected UGMs on the basis of the measured permanent strain curves. The determined permanent deformation properties are assigned as target values for the development of permanent deformation prediction models. Third, a series of performance-related base course properties are used to comprehensively characterize the UGMs, which include the dry density, moisture content, aggregate gradation, morphological properties, percent fines content, and methylene blue value. These performance-related base course properties are assigned as the inputs of the permanent deformation prediction models. Fourth, a multiple regression analysis is conducted to develop the prediction models for permanent deformation properties using these performance-related properties. The developed models are capable of accurately predicting the permanent deformation properties of UGMs. Compared to other prediction models (e.g., simple indicators-based models and Pavement ME Design models), the developed models have the highest prediction accuracy. It is also found that the Pavement ME model-predicted permanent strains are much lower than those measured from the RLT tests. This demonstrates that the current Pavement ME Design software substantially underestimates the rutting that occurs in base course. Finally, the developed prediction models are validated by comparing the predicted and measured permanent strains of other four base materials. The obtained R-squared value of 0.81 indicates that the developed models have a desirable accuracy in the prediction of permanent deformation properties of UGMs

    Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements

    Get PDF
    In this paper, a hierarchical approach is proposed for the evaluation of fatigue cracking in asphalt concrete pavements considering three different levels of complexities in the representation of the material behaviour, design parameters characterization and the determination of the pavement response as well as damage computation. Based on the developed hierarchical approach, three damage computation levels are identified and proposed. The levels of fatigue damage analysis provides pavement engineers a variety of tools that can be used for pavement analysis depending on the availability of data, required level of prediction accuracy and computational power at their disposal. The hierarchical approach also provides a systematic approach for the understanding of the fundamental mechanisms of pavement deterioration, the elimination of the empiricism associated with pavement design today and the transition towards the use of sound principles of mechanics in pavement analysis and design

    Performance model for unbound grnular materials pavements

    No full text
    Recently, there has been growing interest on the behaviour of unbound granular material in road base layers. Researchers have studied that the design of a new pavement and prediction of service life need proper characterization of unbound granular materials, which is one of the requirements for a new mechanistic design method in flexible pavement. Adequate knowledge of the strength and deformation characteristics of unbound layer in pavements is a prerequisite for proper thickness design, residual life determination, and overall economic optimization of the pavement structure. The current knowledge concerning the granular materials employed in pavement structures is limited. In addition, to date, no general framework has been established to explain satisfactorily the behaviour of unbound granular materials under the complex repeated loading which they experience. In this study, a conceptual method, packing theory-based model is introduced; this framework evaluates the stability and performance of granular materials based on their packing arrangement. In the framework two basic aggregate structures named as Primary Structure (PS), and Secondary Structure (SS). The Primary Structure (PS) is a range of interactive grain sizes that forms the network of unbound granular materials. The Secondary Structure (SS) includes granular materials smaller than the primary structure. The Secondary Structures fill the gaps between the particles in the Primary Structure and larger particles essentially float in the skeleton. In this particular packing theory-based model; the Primary Structure porosity, the average contact points (coordination number) of Primary Structure, and a new parameter named Disruption Potential are the key parameters that determine whether or not a particular gradation results in a suitable aggregate structure. Parameters mentioned above play major role in the aggregate skeleton to perform well in terms of resistance to permanent deformation as well as load carrying capacity (resilient modulus). The skeleton of the materials must be composed of both coarse enough and a limited amount of fine granular materials to effectively resist deformation and carry traffic loads.QC 2012060

    Packing theory-based Framework for Performance Evaluation of Unbound Granular Materials

    No full text
    Enhancing the load bearing quality of granular layers is fundamental to optimize the structural performance of the pavements. Unbound granular materials are one of the most used materials in the base layers of pavements. There have been growing interests on the behavior of unbound granular material in road base layers. Both design of a new pavement and prediction of service life need proper characterization of unbound granular materials, which is one of the requirements for a new mechanistic pavement design methods. Adequate knowledge of the strength and deformation characteristics of unbound layers in pavements is essential for proper thickness design, residual life determination, and economic optimization of the pavement structure. The current knowledge concerning granular materials employed in pavement structures is limited. In addition, to date, no general framework has been established to explain and evaluate satisfactorily the behavior of unbound granular materials under the complex repeated loading which they experience. This thesis presents a packing theory-based framework to evaluate the mechanical properties of unbound granular materials. The framework was developed based on the particle-to-particle contact, the particle size distribution and the packing arrangement. The skeleton of the unbound materials should be composed of both coarse enough particles and a limited amount of fine granular materials to effectively resist deformation and carry traffic loads. Based on this, the framework identifies the two basic components of unbound granular materials, namely the primary structure (PS) - a range of interactive coarse grain sizes that forms the main load carrying network in granular materials and the secondary structure (SS) - a range of grain sizes smaller than the PS providing stability to the aggregate skeleton. In the framework, disruption potential (DP), PS porosity, PS coordination number and void ratio of skeleton (PS+SS) are among the key packing parameters which were established from the framework. These parameters were validated by evaluating the permanent deformation, resilient modulus and California bearing ratio of unbound granular materials using different materials with various experimental results. Furthermore, in this thesis a new moisture distribution model (Birgisson-Jelagin-Yideti (BJY) moisture distribution model) was introduced. In the model, SS particles associated with water retention. The water is stored as meniscus water between these small particles and fully filled in small voids. The volume of meniscus water between SS particles and the measured matric suction values are the two key parameters considered in the model. The results showed that the model developed is capable of predicting the experimentally measured matric suction values for a range of gradations. Finally, the application of shakedown and packing theories to characterize permanent deformation behaviour of unbound aggregate materials is presented. A simple finite element analysis has also been simulated in order to find out the effect of disruption potential on the shakedown limit load. Experimental results were used for the simulation of the finite element and compared favourably with the predicted mean stress and dimensionless shakedown load using DP values.QC 20140324</p
    corecore