50 research outputs found
Exploration of an Actin Promoter-Based Transient Expression Vector to Trace the Cellular Localization of Nucleorhabdovirus Proteins in Leafhopper Cultured Cells
Continuously cultured cell lines derived from planthopper and leafhopper have greatly facilitated the investigation of rice viruses transmitted by these insects. However, the lack of a suitable transient expression vector has limited their utility. Here, by cloning and analyzing the promoter sequence of the gene encoding cytoplasmic actin from the leafhopper Nephotettix cincticeps, we successfully developed the first efficient transient expression vector for cultured leafhopper cells, which can also be used to express exogenous proteins in other insect culture cell lines, including those derived from Recilia dorsalis leafhopper and Spodoptera frugiperda (Sf9). Furthermore, insertion of the Hr5 viral enhancer element and knockdown of the endogenous Dicer2 gene notably improved the vector’s expression efficiency in leafhopper cells. Using the optimized vector, we have for the first time traced the cellular localization of the proteins encoded by rice yellow stunt virus (RYSV) in cells of its insect vector and demonstrated that P6 protein is a component of the viroplasm
Improving the storage quality and suppressing off-flavor generation of winter jujube by precise micro-perforated MAP
IntroductionTraditional modified atmosphere packaging (MAP) cannot meet the preservation requirements of winter jujube, and the high respiration rate characteristics of winter jujube will produce an atmosphere component with high CO2 concentration in traditional MAP. Micro-perforated MAP is suitable for the preservation of winter jujube due to its high permeability, which can effectively remove excess CO2 and supply O2. In this study, a microporous film preservation system that can be quickly applied to winter jujube was developed, namely PMP-MAP (precise micro-perforated modified atmosphere packaging). An experiment was designed to store winter jujube in PMP-MAP at 20°C and 2°C, respectively. The quality, aroma and antioxidant capacity, etc. of winter jujube at the storage time were determined.MethodsIn this study, the optimal micropore area required for microporous film packaging at different temperatures is first determined. To ensure the best perforation effect, the effects of various factors on perforation efficiency were studied. The gas composition within the package was predicted using the gas prediction equation to ensure that the gas composition of the perforated package achieved the desired target. Finally, storage experiments were designed to determine the quality index of winter jujube, including firmness, total soluble solids, titratable acid, reddening, and decay incidence. In addition, sensory evaluation, aroma and antioxidant capacity were also determined. Finally, the preservation effect of PMP-MAP for winter jujube was evaluated by combining the above indicators.Results and discussionAt the end of storage, PMP-MAP reduced the respiration rate of winter jujube, which contributed to the preservation of high total soluble solids and titratable acid levels, and delayed the reddening and decay rate of winter jujube. In addition, PMP-MAP maintained the antioxidant capacity and flavor of winter jujube while inhibiting the occurrence of alcoholic fermentation and off-flavors. This can be attributed to the effective gas exchange facilitated by PMP-MAP, thereby preventing anaerobic stress and quality degradation. Therefore, the PMP-MAP approach is an efficient method for the storage of winter jujube
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial
Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials.
Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure.
Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen.
Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
GENOME-WIDE REGULATION OF HISTONE H3Y41P TO SAFEGUARD GENOMIC INTEGRITY
Ph.DDOCTOR OF PHILOSOPHY (SOM
Change of the Extractability of Cadmium Added to Different Soils: Aging Effect and Modeling
Ethylenediaminetetraacetic acid (EDTA) is known to be a chelating agent and has been widely used for estimating the total extractable metals in soil. The effect of aging on EDTA-extractable cadmium (Cd) was investigated in five different soils at three Cd concentrations incubated for 180 days. The EDTA-extractable Cd rapidly decreased after incubated during 30–60 days, followed by slow processes, and for 90 days the EDTA-extractable Cd tended to be stable. The decrease in EDTA-extractable Cd may be due to precipitation/nucleation processes, diffusion of Cd into the micropores/mesopores, and occlusion within organic matter in soils. A semi-mechanistic model to predict the extractability of Cd during incubation, based on processes of Cd precipitation/nucleation, diffusion, and occlusion within organic matter, was developed and calibrated. The results showed that the processes of micropore/mesopore diffusion were predominant processes affecting the extractability of Cd added to soils, and were slow. However, the proportions of the processes of precipitation/nucleation and occlusion within organic matter to the non-EDTA-extractable Cd added to soils were only 0.03–21.0% and 0.41–6.95%, respectively. The measured EDTA-extractable Cd from incubated soils were in good agreement with those predicted by the semi-mechanistic model (R2 = 0.829). The results also indicated that soil pH, organic matter, and incubation time were the most important factors affecting Cd aging
Research on the Application of Thermal Protection Seal and Convenient Maintenance Materials for High-Speed Airborne Missile
In order to solve the problems of thermal protection and convenient & efficient maintenance of high-speed airborne missiles in harsh service environment, researches on two key technologies of seal for thermal protection (STP) and outfield maintenance support of thermal protection (OMSTP) of the missile bodies are carried out. Concept and relevant requirements of seal for thermal protection & convenient outfield maintenance support dual-purpose (STP-OMSTP) materials are proposed. Focusing on the needs of mass production and maintenance of the missiles, comparative tests are carried out between common repair and sealing materials matching the thermal protective coating and the STP-OMSTP materials. The results show that STP-OMSTP material has the advantages of good thermal sealing effect, quick and convenient operation, and strong environmental adaptability, which is obviously better than traditional repair and sealing materials, and is more suitable for mass production and outfield maintenance