81 research outputs found

    Intravenous digital subtraction angiography in the assessment of patients with left to right shunts before and after surgical correction

    Get PDF
    Pre- and postoperative structural changes and pulmonary to systemic flow (QP/QS) ratios were assessed using digital angiography in 34 patients documented to have a left to right shunt at cardiac catheterization. There were 16 men and 18 women whose ages ranged from 4 months to 60 years. The radiographic single mask mode was used for all digital subtraction angiographic studies with a typical radiographic sequence being 80 to 100 kV, 5 to 10 mA/frame at six frames/s for 15 seconds. Renografin-76 was used as a bolus injection at 0.5 to 1.0 ml/kg via an arm vein in most patients. The level of the left to right shunt and any associated anomalies were noted and compared with results from cardiac catheterization. Digital subtraction angiographic flow curves were generated from the pulmonary arteries, and QP/QS ratios were calculated pre- and postoperatively using the gamma variate fit method and compared with the QP/QS ratio from first pass radionuclide studies.A strong correlation between preoperative digital subtraction angiographically derived QP/QS ratio and radionuclide-derived QP/QS ratio was found, with an r value equal to 0.89, p < 0.0001. Postoperatively, all patients had a QP/QS ratio less than 1.2:1.0 for both digital subtraction angiography and radionuclide studies. The level of left to right shunt was accurately assessed in all patients, and its absence observed postoperatively. Associated anomalies, such as a persistent left superior vena cava, coarctation of the aorta and partial anomalous venous return, were identified in all cases.Intravenous digital subtraction angiography provides accurate quantitative and anatomic data in patients with a left to right shunt, is potentially an important outpatient method to assess adequate surgical correction and may suffice preoperatively to proceed to cardiac surgery without preoperative cardiac catheterization

    Differentiating lower motor neuron syndromes

    Get PDF
    Lower motor neuron (LMN) syndromes typically present with muscle wasting and weakness and may arise from pathology affecting the distal motor nerve up to the level of the anterior horn cell. A variety of hereditary causes are recognised, including spinal muscular atrophy, distal hereditary motor neuropathy and LMN variants of familial motor neuron disease. Recent genetic advances have resulted in the identification of a variety of disease-causing mutations. Immune-mediated disorders, including multifocal motor neuropathy and variants of chronic inflammatory demyelinating polyneuropathy, account for a proportion of LMN presentations and are important to recognise, as effective treatments are available. The present review will outline the spectrum of LMN syndromes that may develop in adulthood and provide a framework for the clinician assessing a patient presenting with predominantly LMN features

    Immunomodulation of inflammatory leukocyte markers during intravenous immunoglobulin treatment associated with clinical efficacy in chronic inflammatory demyelinating polyradiculoneuropathy

    Get PDF
    © 2016 The Authors. Brain and Behavior published by Wiley Periodicals, Inc. Objective: The objective of the study was to profile leukocyte markers modulated during intravenous immunoglobulin (IVIg) treatment, and to identify markers and immune pathways associated with clinical efficacy of IVIg for chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) with potential for monitoring treatment efficacy. Methods: Response to IVIg treatment in newly diagnosed IVIg-naïve and established IVIg-experienced patients was assessed by changes in expression of inflammatory leukocyte markers by flow cytometry. The adjusted INCAT disability and Medical Research Council sum scores defined clinical response. Results: Intravenous immunoglobulin modulated immunopathogenic pathways associated with inflammatory disease in CIDP. Leukocyte markers of clinical efficacy included reduced CD185 + follicular helper T cells, increased regulatory markers (CD23 and CD72) on B cells, and reduction in the circulating inflammatory CD16 + myeloid dendritic cell (mDC) population and concomitant increase in CD62L and CD195 defining a less inflammatory lymphoid homing mDC phenotype. A decline in inflammatory CD16 + dendritic cells was associated with clinical improvement or stability, and correlated with magnitude of improvement in neurological assessment scores, but did not predict relapse. IVIg also induced a nonspecific improvement in regulatory and reduced inflammatory markers not associated with clinical response. Conclusions: Clinically effective IVIg modulated inflammatory and regulatory pathways associated with ongoing control or resolution of CIDP disease. Some of these markers have potential for monitoring outcome

    Multidisciplinary Ophthalmic Imaging Progressive Loss of Retinal Ganglion Cells and Axons in Nonoptic Neuritis Eyes in Multiple Sclerosis: A Longitudinal Optical Coherence Tomography Study

    Get PDF
    Citation: Graham EC, You Y, Yiannikas C, et al. Progressive loss of retinal ganglion cells and axons in non-optic neuritis eyes in multiple sclerosis: a longitudinal optical coherence tomography study. Invest Ophthalmol Vis Sci. 2016;57:231157: -231757: . DOI:10.1167 PURPOSE. To examine the rate of retinal ganglion cell (RGC) layer and retinal nerve fiber layer (RNFL) changes in nonoptic neuritis (NON) eyes of relapsing remitting multiple sclerosis (RRMS) patients, and to find a specific imaging parameter useful for identifying disease progression. METHODS. Forty-five consecutive RRMS patients and 20 age-and sex-matched healthy subjects were enrolled. All patients were followed up for 3 years with annual optical coherence tomography (OCT) scans, which included a peripapillary ring scan protocol for RNFL analysis and a macular radial star-like scan to obtain RGC/inner plexiform layer (IPL) thickness measures. Healthy controls were scanned twice, 3 years apart. RESULTS. Retinal ganglion cell/inner plexiform layer and temporal RNFL (tRNFL) demonstrated highly significant thinning (P &lt; 0.01), but all nasal segments and global RNFL (gRNFL) were not significantly different from normal controls. While receiver operating characteristics (ROC) analysis showed no advantage of RGC/IPL over tRNFL in cross-sectional detection of thinning, cut-off point based of fifth percentile in healthy controls demonstrated higher rate of abnormality for RGC/IPL. There was a significant progressive loss of RGC/IPL and tRNFL during the follow-up period. The largest thickness reduction was observed in tRNFL. ROC analysis demonstrated that tRNFL provided better sensitivity/specificity for detecting change over time than RGC/IPL (area under the curve [AUC] 0.78 vs. 0.52), which was confirmed by higher detection rate when 95 th percentile of progression in healthy controls was used as a cut-off. CONCLUSIONS. This study confirmed significant thinning of RGC/IPL and tRNFL in NON eyes of RRMS patients. Progressive losses were more apparent on tRNFL, while RGC/IPL showed less change over the follow-up period

    Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination.

    Get PDF
    Abstract OBJECTIVE: We characterised the clinical course, treatment and outcomes in 59 patients with relapsing myelin oligodendrocyte glycoprotein (MOG) antibody-associated demyelination. METHODS: We evaluated clinical phenotypes, annualised relapse rates (ARR) prior and on immunotherapy and Expanded Disability Status Scale (EDSS), in 218 demyelinating episodes from 33 paediatric and 26 adult patients. RESULTS: The most common initial presentation in the cohort was optic neuritis (ON) in 54% (bilateral (BON) 32%, unilateral (UON) 22%), followed by acute disseminated encephalomyelitis (ADEM) (20%), which occurred exclusively in children. ON was the dominant phenotype (UON 35%, BON 19%) of all clinical episodes. 109/226 (48%) MRIs had no brain lesions. Patients were steroid responsive, but 70% of episodes treated with oral prednisone relapsed, particularly at doses <10\u2009mg daily or within 2 months of cessation. Immunotherapy, including maintenance prednisone (P=0.0004), intravenous immunoglobulin, rituximab and mycophenolate, all reduced median ARRs on-treatment. Treatment failure rates were lower in patients on maintenance steroids (5%) compared with non-steroidal maintenance immunotherapy (38%) (P=0.016). 58% of patients experienced residual disability (average follow-up 61 months, visual loss in 24%). Patients with ON were less likely to have sustained disability defined by a final EDSS of 652 (OR 0.15, P=0.032), while those who had any myelitis were more likely to have sustained residual deficits (OR 3.56, P=0.077). CONCLUSION: Relapsing MOG antibody-associated demyelination is strongly associated with ON across all age groups and ADEM in children. Patients are highly responsive to steroids, but vulnerable to relapse on steroid reduction and cessation

    Motor unit remodelling in multifocal motor neuropathy: The importance of axonal loss

    Get PDF
    OBJECTIVE: To estimate the degree of axonal loss in patients diagnosed with multifocal motor neuropathy (MMN) using a novel assessment of motor unit numbers and size. METHODS: Automated motor unit number estimation using a compound muscle action potential (CMAP) scan was undertaken in median nerves with conduction block. Results were compared with 30 age-matched healthy controls. RESULTS: Compared with healthy controls, MMN patients had fewer motor units (MMN: 33±11vs HC: 93±36 [mean±SD]; p<0.0001) and larger 'size of the largest unit' (MMN: 1.2±0.5mVvs HC: 0.4±0.1mV; p<0.0001), despite having normal distal CMAP amplitudes (MMN: 7.6±1.8mVvs HC: 8.7±2.5mV; p=0.24). CONCLUSIONS: MMN is associated with marked axonal loss which may be masked by striking re-innervation resulting in preservation of distal CMAP amplitudes. SIGNIFICANCE: Assessment of motor unit properties should be incorporated into assessment of disease progression in MMN, given that nerve conduction studies are insensitive to motor unit remodelling

    Whole genome sequencing for the genetic diagnosis of heterogenous dystonia phenotypes

    Get PDF
    Introduction: Dystonia is a clinically and genetically heterogeneous disorder and a genetic cause is often difficult to elucidate. This is the first study to use whole genome sequencing (WGS) to investigate dystonia in a large sample of affected individuals. Methods: WGS was performed on 111 probands with heterogenous dystonia phenotypes. We performed analysis for coding and non-coding variants, copy number variants (CNVs), and structural variants (SVs). We assessed for an association between dystonia and 10 known dystonia risk variants. Results: A genetic diagnosis was obtained for 11.7% (13/111) of individuals. We found that a genetic diagnosis was more likely in those with an earlier age at onset, younger age at testing, and a combined dystonia phenotype. We identified pathogenic/likely-pathogenic variants in ADCY5 (n = 1), ATM (n = 1), GNAL (n = 2), GLB1 (n = 1), KMT2B (n = 2), PRKN (n = 2), PRRT2 (n = 1), SGCE (n = 2), and THAP1 (n = 1). CNVs were detected in 3 individuals. We found an association between the known risk variant ARSG rs11655081 and dystonia (p = 0.003). Conclusion: A genetic diagnosis was found in 11.7% of individuals with dystonia. The diagnostic yield was higher in those with an earlier age of onset, younger age at testing, and a combined dystonia phenotype. WGS may be particularly relevant for dystonia given that it allows for the detection of CNVs, which accounted for 23% of the genetically diagnosed cases. © 2019 The Author

    Corticomotoneuronal function and hyperexcitability in acquired neuromyotonia

    Get PDF
    Acquired neuromyotonia encompasses a group of inflammatory disorders characterized by symptoms reflecting peripheral nerve hyperexcitability, which may be clinically confused in the early stages with amyotrophic lateral sclerosis. Despite a clear peripheral nerve focus, it remains unclear whether the ectopic activity in acquired neuromyotonia receives a central contribution. To clarify whether cortical hyperexcitability contributes to development of clinical features of acquired neuromyotonia, the present study investigated whether threshold tracking transcranial magnetic stimulation could detect cortical hyperexcitability in acquired neuromyotonia, and whether this technique could differentiate acquired neuromyotonia from amyotrophic lateral sclerosis. Cortical excitability studies were undertaken in 18 patients with acquired neuromyotonia and 104 patients with amyotrophic lateral sclerosis, with results compared to 62 normal controls. Short-interval intracortical inhibition in patients with acquired neuromyotonia was significantly different when compared to patients with amyotrophic lateral sclerosis (averaged short interval intracortical inhibition acquired neuromyotonia 11.3 ± 1.9%; amyotrophic lateral sclerosis 2.6 ± 0.9%, P < 0.001). In addition, the motor evoked potential amplitudes (acquired neuromyotonia 21.0 ± 3.1%; amyotrophic lateral sclerosis 38.1 ± 2.2%, P < 0.0001), intracortical facilitation (acquired neuromyotonia −0.9 ± 1.3%; amyotrophic lateral sclerosis −2.3 ± 0.6%, P < 0.0001), resting motor thresholds (acquired neuromyotonia 62.2 ± 1.6%; amyotrophic lateral sclerosis 57.2 ± 0.9%, P < 0.05) and cortical silent period durations (acquired neuromyotonia 212.8 ± 6.9 ms; amyotrophic lateral sclerosis 181.1 ± 4.3 ms, P < 0.0001) were significantly different between patients with acquired neuromyotonia and amyotrophic lateral sclerosis. Threshold tracking transcranial magnetic stimulation established corticomotoneuronal integrity in acquired neuromyotonia, arguing against a contribution of central processes to the development of nerve hyperexcitability in acquired neuromyotonia
    • 

    corecore