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ABSTRACT  

Objective: To estimate the degree of axonal loss in patients diagnosed with multifocal motor 

neuropathy (MMN) using a novel assessment of motor unit numbers and size. Methods: 

Automated motor unit number estimation using a compound muscle action potential (CMAP) 

scan was undertaken in median nerves with conduction block. Results were compared with 

30 age-matched healthy controls. Results: Compared with healthy controls, MMN patients 

had fewer motor units (MMN: 33 ± 11 vs HC: 93 ± 36 [mean ± SD]; p<0.0001) and larger 

‘size of the largest unit’ (MMN: 1.2 ± 0.5mV vs HC: 0.4 ± 0.1mV; p<0.0001), despite having 

normal distal CMAP amplitudes (MMN: 7.6 ± 1.8mV vs HC: 8.7 ± 2.5mV; p=0.24). 

Conclusions: MMN is associated with marked axonal loss which may be masked by striking 

re-innervation resulting in preservation of distal CMAP amplitudes. Significance: Assessment 

of motor unit properties should be incorporated into assessment of disease progression in 

MMN, given that nerve conduction studies are insensitive to motor unit remodelling. 

 

Keywords: Neurophysiology; neuromuscular disease; autoimmune diseases; multifocal 

motor neuropathy; axonal degeneration. 

 

Highlights 

 Axonal degeneration is an integral part of the disease process in MMN. 

 Axonal loss in MMN may be masked by prominent re-innervation. 

 Nerve conduction studies are not sensitive to motor unit remodelling in MMN. 
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1. INTRODUCTION 

Progressive axonal degeneration is a prominent feature of multifocal motor neuropathy 

(MMN), differentiating it from the other immune-mediated neuropathies (Vlam et al., 2011). 

The aim of immunomodulatory treatment with intravenous immunoglobulin (IVIg) has been 

to reduce the rate of axonal loss as this is the most important determinant of permanent 

weakness and disability (Van Asseldonk et al., 2006; Vucic et al., 2004). It has been 

suggested that the effectiveness of IVIg may decline over time, correlating with the 

development of axonal degeneration (Terenghi et al., 2004). 

 

Unfortunately, mechanisms of conduction block and axonal degeneration in MMN remain 

poorly understood and there remains debate as to whether MMN is primarily a demyelinating 

or axonal disorder (Kiernan et al., 2002). Anti-GM1 IgM is present in approximately 50% of 

patients with MMN with GM1 enriched in the nodal and paranodal regions (Vlam et al., 

2011; Willison and Yuki, 2002). It has recently been suggested that disease processes 

targeting these regions represent a distinct group of neuropathies characterised by a 

continuum from conduction block to axonal degeneration, a concept which may be pivotal in 

understanding the pathophysiology of conditions such as MMN (Uncini and Kuwabara, 

2015).  

 

Axonal loss is typically only identified late in the disease process and only once the 

compound muscle action potential (CMAP) amplitude has reduced on nerve conduction 

studies (NCS). The present study was prompted by the frustration at the lack of an objective 

method to monitor treatment response and disease progression in MMN patients. As such, a 

novel technique was utilised to quantify the degree of axonal loss and compensatory 

reinnervation in MMN as a potential tool for disease monitoring. 



  

Garg, Page 5 
 

5 
 

2. METHODS 

2.1. Patient cohort and selection criteria 

Consecutive patients fulfilling European Federation of Neurological Societies/Peripheral 

Nerve Society criteria for MMN (definite or probable) were prospectively recruited between 

April 2015 and December 2016. Cases of ‘possible’ MMN were excluded (Joint Task Force 

of the EFNS and the PNS, 2010).  Results were compared with 30 healthy control subjects 

who were screened based on their medical history. All participants gave written informed 

consent to participate in the study. The study was approved by the Sydney Local Health 

District Ethics Review Committee (Royal Prince Alfred Hospital). 

 

2.2. Assessment Tools 

Muscle strength was assessed using Medical Research Council (MRC) grading by a single 

investigator (N.G.) in 15 muscle groups bilaterally (shoulder abduction, elbow flexion, elbow 

extension, wrist flexion, wrist extension, finger extension, finger flexion, first dorsal 

interosseus, abductor digiti minimi, thumb abduction, hip flexion, knee flexion, knee 

extension, ankle dorsiflexion and ankle plantarflexion). The MRC grades were summed to 

calculate an expanded MRC sum-score (maximum score 150). Serum from each patient was 

tested for anti-GM1 IgM antibodies as previously described (Yuki et al., 1997). 

 

2.3. Nerve conduction studies 

All patients underwent NCS at the time of recruitment by a single 

neurologist/neurophysiologist (N.G.) to ensure criteria for MMN were fulfilled and to 

identify median nerves with conduction block within the forearm segment. All patients had 

motor NCS of the median nerves bilaterally with stimulation at the wrist and elbow and 

recording over abductor pollicis brevis. In addition, patients underwent ulnar, common 



  

Garg, Page 6 
 

6 
 

peroneal and tibial motor studies and median, ulnar and radial sensory studies unilaterally. 

Conduction block was defined as negative peak CMAP area reduction of at least 30% on 

stimulation of wrist versus elbow with duration increase of 30% or less, or CMAP area 

reduction of 50% when CMAP duration increase was greater than 30% (Joint Task Force of 

the EFNS and the PNS, 2010).  

 

2.4. Assessment of motor unit properties using a novel CMAP scan 

CMAP scans (Bostock, 2016) were recorded using the TRONDNF protocol within 

QTRACW software (© Institute of Neurology, University College London, UK). All 

recordings were undertaken by stimulating the median nerve at the wrist with a 0.2 ms wide 

stimulus using an isolated constant current stimulator (DS5; Digitimer, Welwyn Garden City, 

UK). The active recording electrode was placed over the motor point of abductor pollicis 

brevis and reference electrode over the proximal phalanx. The stimulus strength was 

manually increased until the supramaximal CMAP was reached. Following this, stimuli were 

delivered twice per second with each stimulus intensity being 99.8% of the preceding 

stimulus until no response was recordable. 20 pre- and post-scan sweeps were recorded to 

assess variability of supramaximal (MScan Peak) and baseline responses respectively with 

each scan taking approximately 5 minutes in total. 

 

The MScanFit program contained within the QTRACW software was used to derive a motor 

unit number estimate (MUNE), and Size of the largest unit (in mV and as a percentage of the 

MScan Peak). The program uses a mathematical model to simulate the recorded scan. The 

modelled scan is then ‘fitted’ to the recorded scan by making sequential adjustments until the 

discrepancy between the two scans is minimised as previously described (Bostock, 2016).  
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Median nerves with forearm conduction block were selected for the current study as this is a 

frequent site of involvement in typical MMN and the forearm segment is not a typical site of 

entrapment neuropathy. Median nerves with distal motor latency prolongation on NCS 

(>4ms) were excluded due to the possibility of entrapment neuropathy at the wrist. In patients 

with bilateral median nerve forearm CB, only results from one side were used in the analysis.  

 

2.5. Statistics 

An independent samples t-test was used to compare age, MScan Peak and MUNE between 

MMN patients and healthy controls. Results of the Size of the largest unit were not normally 

distributed in MMN patients. Hence, the Mann-Whitney U test was used. Pearson correlation 

coefficient was used to investigate the relationship between MUNE, MScan Peak and age 

followed by linear regression analysis. Significance was defined by a p-value of <0.05. 

Results are presented as mean ± standard deviation. Statistical analysis and graph 

construction was performed using Graph Pad Prism 7 and IBM SPSS Statistics (Version 22). 

 

3. RESULTS 

A total of 12 patients fulfilling EFNS/PNS criteria for definite or probable MMN were 

recruited. All MMN patients were established and controlled on maintenance IVIg therapy. 

Ten patients were identified with median nerve motor conduction block in the forearm. Two 

patients had high thresholds limiting supramaximal stimulation and hence accurate motor unit 

number estimation could not be calculated. The remaining eight patients underwent median 

nerve CMAP scans on the ipsilateral side of conduction block. Clinical and laboratory 

features of the patients were typical of MMN (Table 1). Results were compared with 

recordings from 30 healthy controls [13:17 (M:F)] who were of similar age (MMN: 54.6 ± 
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13.6; HC: 55.1 ± 16.5; p = ns). 63% of MMN patients were positive for anti-GM1 IgM. The 

mean IVIg dose was 0.9 ± 0.4 grams/kg/4-weeks.  

 

3.1. Nerve Conduction Studies 

Median nerve conduction data for MMN patients (summarised in Table 2) confirmed that all 

patients had well preserved median nerve distal CMAP amplitudes > 5mV, with a mean distal 

CMAP of 8.05 ± 1.9 mV (range 6.3 – 11.2) and mean area reduction 54% ± 22 (range 30 – 

93%). The precise site of conduction block was unable to be accurately localised in the 

majority of patients due to the deep location of the median nerve within the forearm.  

 

3.2. Results of CMAP Scan 

Compared with healthy controls, there was no difference in the maximal response (MScan 

Peak) in the MMN group (MMN: 7.6 ± 1.8 mV vs HC: 8.7 ± 2.5 mV; p=0.24) (Figure 1A). 

However, MMN patients had a markedly reduced number of units having only a third of the 

number of units that were seen in HC subjects (MMN: 33 ± 11 vs HC: 93 ± 36; p<0.0001) 

(Figure 1B, Tables 2 and 3). In addition, MMN patients exhibited a strikingly larger size of 

the largest unit compared with healthy controls (MMN: 1.2 ± 0.5 mV vs HC: 0.4 ± 0.1 mV; 

p<0.0001) (Figure 1C, D) demonstrating that despite substantial axonal loss, significant 

reinnervation had occurred maintaining a normal distal CMAP. An example of the CMAP 

scan in an MMN subject and a healthy control are presented in Figure 2. 

 

3.3. Correlations between clinical features and neurophysiology 

There was a positive correlation between MUNE and MScan Peak in the HC group (R = 0.69; 

p < 0.0005) and a negative correlation between age and MUNE (R = - 0.65; p < 0.0005). 

These correlations were lost in the MMN group (Figure 3). No correlation was found 
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between MUNE or Size of largest unit and clinical features such as disease duration or 

expanded MRC sum-score in the MMN patients.  

 

4. DISCUSSION 

The present study highlights the marked reduction in the number of motor units innervating a 

muscle affected by conduction block in MMN despite preservation of the distal CMAP 

amplitude. The degree of axonal loss suggests that the axon may be a direct target in MMN.  

Furthermore, it demonstrates the striking collateral reinnervation by surviving motor units 

compensating for and potentially masking axon loss that has occurred.  

 

The immune basis for MMN is supported by the association with anti-GM1 IgM antibody and 

response to immunomodulatory therapy. GM1 is enriched in the nodal and paranodal regions 

(Willison and Yuki, 2002) and gangliosides play an important role in the maintenance and 

stabilisation of the paranode and ion channel clustering (Susuki et al., 2007). Conduction 

block may result from a variety of processes such as lengthening of the node, detachment of 

myelin from the paranode, sodium channel dysfunction and/or abnormalities in axolemma 

polarisation (Barnett et al., 2016; Uncini and Kuwabara, 2015) and in theory, pathology at 

either the node and/or the paranode could lead to conduction failure and axonal degeneration.  

Axonal degeneration has been shown to be strongly associated with conduction block 

supporting the notion that the same pathophysiology may account for both processes (Vucic 

et al., 2007; Van Asseldonk et al., 2006) and the continuum from conduction block to axonal 

degeneration with disease processes affecting the nodal/paranodal regions has recently 

become better recognised as a distinct entity (Uncini and Kuwabara, 2015).  
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Only a small number of conflicting reports have described the histopathology of motor fibres 

in MMN (Vlam et al., 2011). While one study found predominantly axonal pathology (Taylor 

et al., 2004), two others reported evidence of demyelination along with onion bulb formations 

(Corbo et al., 1997; Kaji et al., 1993). In two histopathology studies regenerative fibre 

clusters were reported in MMN (Corbo et al., 1997; Taylor et al., 2004), changes which were 

not seen in biopsies taken from patients with motor neuron disease (Corbo et al., 1997), 

highlighting that motor nerve regeneration is a prominent feature of MMN.  

 

Axonal degeneration is a key area of interest in MMN as it is the major determinant of 

permanent weakness and disability (Cats et al., 2010; Van Asseldonk et al., 2006). 

Traditionally, axon loss has been heralded by a reduction in the distal CMAP amplitude (Cats 

et al., 2010; Terenghi et al., 2004). The present study highlights that axonal loss may be 

prominent before a reduction in CMAP amplitude reinforcing the notion that nerve 

conduction studies may be suboptimal in monitoring disease progression and treatment 

response. In one study, needle electromyography (EMG) was shown to be more sensitive in 

detecting axonal loss than assessment of distal CMAP amplitude with EMG abnormalities 

demonstrated in patients with short disease duration. Furthermore, in the same study, 90% of 

patients had EMG signs of reinnervation (Van Asseldonk et al., 2006). The results of the 

present study are consistent with these findings. However, while EMG should show a 

reduction in motor units and increase in size of units, it is not a practical tool for long-term 

monitoring. 

 

IVIg remains the mainstay of therapy for MMN with studies demonstrating its efficacy in 

improving muscle strength and neurophysiological parameters, although in some series this 

has been followed by a slow decline in CMAP amplitudes and muscle scores (Terenghi et al., 
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2004; Van den Berg-Vos et al., 2002). It has been reported that the effect of IVIg often 

declines over time and progressive wasting and weakness may ensue despite increasing doses 

of IVIg (Cats et al., 2010; Terenghi et al., 2004). It has however, been demonstrated that early 

institution of higher doses of IVIg may prevent this decline by promoting reinnervation 

(Vucic et al., 2004). The general approach in clinical practice for patients established on 

IVIg, is to escalate treatment by increasing IVIg dosing or frequency only once a patient 

clinically deteriorates (Burrell et al., 2011).  However, once distal CMAP reductions occur 

and disability ensues, it is possible that the capacity for repair has largely been exhausted and 

hence escalating treatment during this stage of the disease may be inadequate.  

 

The CMAP Scan is a new technique for MUNE estimation which is practical and fast to 

perform, taking only approximately 5 minutes. MUNE values, particularly when small, are 

accurately estimated with a mean absolute error of less than 7% (Bostock, 2016). The CMAP 

Scan method has been shown to have good reproducibility in ALS with inter and intra-rater 

reproducibility exceeding that of other methods of motor unit number estimation, including 

multiple point stimulation MUNE (MPS) and motor unit number index (MUNIX) (Jacobsen, 

2017). 

 

MPS and MUNIX have been used to demonstrate axonal loss and reinnervation in patients 

with CIDP, although 25% of CIDP patients in this series had a severe reduction in CMAP 

amplitude (Paramanathan et al., 2015). Furthermore, multipoint incremental MUNE has 

shown that spinal muscular atrophy (SMA) is associated with a reduction in CMAP and 

MUNE and increase in measures of unit size with a lower MUNE correlating with a lower 

function score (Gawel et al., 2015). The lack of correlations between CMAP Scan features 

and clinical features in MMN patients in the current study may relate to the highly individual 
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and variable course of MMN and the effects of IVIg on the natural history of the disorder. 

Furthermore, we only studied a single muscle which may not be reflective of the overall 

disease process given the patchy nature of MMN, although all patients had ipsilateral median 

nerve involvement. The current CMAP Scan method has been most extensively studied in the 

APB muscle. Small muscles are best suited to the CMAP Scan to limit movement artefact 

and ensure patient tolerability. Ulnar-innervated muscles such as abductor digiti minimi and 

first dorsal interosseous are further muscles that could be studied and incorporated into a 

neurophysiological score which may be more sensitive for long-term monitoring.  

 

Limitations of the study include the relatively small number of patients given the rare nature 

of the conditions studied. Further studies of motor unit properties in nerves not affected by 

conduction block may provide information about whether axonal degeneration is a direct 

consequence of conduction block or whether it may be a more generalised process in MMN.  

 

5. CONCLUSIONS 

MMN is associated with marked axonal degeneration to which NCS are insensitive due to the 

process of motor unit remodelling and reinnervation. Once a CMAP reduction has occurred, 

axonal loss is severe and compensatory reinnervation may no longer be adequate to 

compensate. Hence aims of treatment in MMN should be to address axonal loss before a 

significant decline in CMAP amplitude occurs. The CMAP Scan used in the present study 

may be a practical way to monitor disease progression and treatment response in MMN. 
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Table 1. Clinical Features of MMN Patients. 

 Sex Age Age at 

onset 

(years) 

Disease 

duration 

(years) 

E-MRC SS 

(/150) 

GM-1 IgM 

Antibody 

Patient 1 F 70 47 23 117 No 

Patient 2 M 45 39 6 141 No 

Patient 3 F 53 33 17 126 Yes 

Patient 4 M 71 66 5 122 Yes 

Patient 5 M 35 32 3 138 No 

Patient 6 F 66 43 23 139 Yes 

Patient 7 M 41 31 10 143 Yes 

Patient 8 F 56 50 6 142 Yes 

Total 4:4 (M:F) 54.6 ± 13.6 

(35 – 71)* 

42.6 ± 11.8 

(31 – 66)* 

11.6 ± 8.2 

(3 – 23)* 

133 ± 10 

(117 - 143)* 

5/8 

(62.5%) 

 

*=mean ± SD 
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Table 2. Median nerve neurophysiology findings in MMN Patients. 

 Side Distal 

CMAP 

amp 

(mV) 

Elbow 

CMAP 

amp 

(mV) 

CMAP 

area 

reduction 

(%) 

Forearm 

CV (m/s) 

Number 

of Units 

Size of 

largest 

unit (mV) 

Patient 1 Right 6.4 3.8 30 49.7 30 1.1 

Patient 2 Left 7.1 1.8 58 48.4 40 1.1 

Patient 3 Right 7.2 3.9 30 39.6 31 1.2 

Patient 4 Left 10.4 1.9 52 53 41 1.1 

Patient 5 Right 8.8 1.5 78 43.7 45 1.0 

Patient 6 Left 11.2 0.6 93 13.3 38 0.9 

Patient 7 Right 6.3 3.9 40 50 10 2.5 

Patient 8 Right 7.0 2.7 51 58.7 25 0.7 
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Table 3. Summary of results from CMAP scan. 

 MMN 

(n=8) 

HC (n=30) P-value 

(MMN vs HC) 

MScan Peak (mV) 7.6 ± 1.8 8.7 ± 2.5 ns 

MUNE 33 ± 11 93 ± 36 <0.0001 

Largest Unit (mV) 1.2 ± 0.5 0.4 ± 0.1 <0.0005 

Largest Unit (%age of 

MScan Peak) 

16.2 ± 6.3. 5.3 ± 1.9 <0.0001 
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Figure 1. Results of CMAP scan. 

Figure legend: There was no significant difference in MScan Peak between the MMN and 

healthy control group (A); There was a marked reduction in the number of units in the MMN 

group compared with healthy controls (B); MMN patients had a much higher Size of largest 

unit compared with healthy controls (C and D). 

HC: healthy controls 

 

Figure 2. CMAP Scan Example. 

Figure legend: Example of CMAP Scan in a subject with MMN demonstrating large units 

with “gaps” in the CMAP Scan (A). In contrast, the healthy control subject has a similar 

MScan Peak, but with many more units and without large “gaps” in the scan (B).  

 

Figure 3. CMAP Scan Correlations between MScan Peak, MUNE and age. 

Figure legend: Negative correlation between age and MUNE (A) and positive correlation 

between MScan Peak and MUNE (B) in healthy controls (black circles and line). These 

correlations were lost in the MMN group (blue circles and line) 

MUNE: motor unit number estimate 

 

ABSTRACT  

Objective: To estimate the degree of axonal loss in patients diagnosed with multifocal motor 

neuropathy (MMN) using a novel assessment of motor unit numbers and size. Methods: 

Automated motor unit number estimation using a compound muscle action potential (CMAP) 

scan was undertaken in median nerves with conduction block. Results were compared with 

30 age-matched healthy controls. Results: Compared with healthy controls, MMN patients 

had fewer motor units (MMN: 33 ± 11 vs HC: 93 ± 36 [mean ± SD]; p<0.0001) and larger 

‘size of the largest unit’ (MMN: 1.2 ± 0.5mV vs HC: 0.4 ± 0.1mV; p<0.0001), despite having 
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normal distal CMAP amplitudes (MMN: 7.6 ± 1.8mV vs HC: 8.7 ± 2.5mV; p=0.24). 

Conclusions: MMN is associated with marked axonal loss which may be masked by striking 

re-innervation resulting in preservation of distal CMAP amplitudes. Significance: Assessment 

of motor unit properties should be incorporated into assessment of disease progression in 

MMN, given that nerve conduction studies are insensitive to motor unit remodelling. 

 

 



  

http://ees.elsevier.com/clinph/download.aspx?id=558543&guid=fe6ecbcd-7540-4578-972a-b3f14c1715b8&scheme=1


  

http://ees.elsevier.com/clinph/download.aspx?id=558540&guid=b406c1a3-d7c3-41c5-a51a-da9fa172c1f3&scheme=1


  

http://ees.elsevier.com/clinph/download.aspx?id=558541&guid=cd422a04-d809-43b9-87e5-fbfd5e493e2d&scheme=1

