1,591 research outputs found

    Analysis and Design of Adaptive Synchronization of a Complex Dynamical Network with Time-Delayed Nodes and Coupling Delays

    Get PDF
    This paper is devoted to the study of synchronization problems in uncertain dynamical networks with time-delayed nodes and coupling delays. First, a complex dynamical network model with time-delayed nodes and coupling delays is given. Second, for a complex dynamical network with known or unknown but bounded nonlinear couplings, an adaptive controller is designed, which can ensure that the state of a dynamical network asymptotically synchronizes at the individual node state locally or globally in an arbitrary specified network. Then, the Lyapunov-Krasovskii stability theory is employed to estimate the network coupling parameters. The main results provide sufficient conditions for synchronization under local or global circumstances, respectively. Finally, two typical examples are given, using the M-G system as the nodes of the ring dynamical network and second-order nodes in the dynamical network with time-varying communication delays and switching communication topologies, which illustrate the effectiveness of the proposed controller design methods

    Bis[2-(2-pyridylmethyl­eneamino)benzene­sulfonato-κ3 N,N′,O]cadmium(II) dihydrate

    Get PDF
    The title complex, [Cd(Paba)2]·2H2O or [Cd(C12H9N2O3S)2]·2H2O, was synthesized by the reaction of the potassium salt of 2-(2-pyridylmethyl­eneamino)benzene­sulfonic acid (PabaK) with CdCl2·2.5H2O in methanol. The CdII atom lies on a crystallographic twofold axis and is coordinated by four N atoms and two O atoms from two deprotonated tridentate 2-(2-pyridylmethyl­eneamino)benzene­sulfonate ligands in a slightly distorted octa­hedral environment. There are extensive hydrogen bonds of the type O—H⋯O between the uncoordinated water molecules and the sulfonate O atoms, through which the complex forms a layered structure parallel to (001)

    Activation of AMP-Activated Protein Kinase Is Required for Berberine-Induced Reduction of Atherosclerosis in Mice: The Role of Uncoupling Protein 2

    Get PDF
    Berberine, a botanical alkaloid purified from Coptidis rhizoma, is reported to activate the AMP-activated protein kinase (AMPK). Whether AMPK is required for the protective effects of berberine in cardiovascular diseases remains unknown. This study was designed to determine whether AMPK is required for berberine-induced reduction of oxidative stress and atherosclerosis in vivo.ApoE (ApoE⁻/⁻) mice and ApoE⁻/⁻/AMPK alpha 2⁻/⁻ mice that were fed Western diets were treated with berberine for 8 weeks. Atherosclerotic aortic lesions, expression of uncoupling protein 2 (UCP2), and markers of oxidative stress were evaluated in isolated aortas.In ApoE⁻/⁻ mice, chronic administration of berberine significantly reduced aortic lesions, markedly reduced oxidative stress and expression of adhesion molecules in aorta, and significantly increased UCP2 levels. In contrast, in ApoE⁻/⁻/AMPK alpha 2⁻/⁻ mice, berberine had little effect on those endpoints. In cultured human umbilical vein endothelial cells (HUVECs), berberine significantly increased UCP2 mRNA and protein expression in an AMPK-dependent manner. Transfection of HUVECs with nuclear respiratory factor 1 (NRF1)-specific siRNA attenuated berberine-induced expression of UCP2, whereas transfection with control siRNA did not. Finally, berberine promoted mitochondrial biogenesis that contributed to up-regulation of UCP2 expression.We conclude that berberine reduces oxidative stress and vascular inflammation, and suppresses atherogenesis via a mechanism that includes stimulation of AMPK-dependent UCP2 expression

    Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans

    Get PDF
    In most eukaryotes, mitochondria are inherited maternally. The autophagy process is critical for paternal mitochondrial elimination (PME) in Caenorhabditis elegans, but how paternal mitochondria, but not maternal mitochondria, are selectively targeted for degradation is poorly understood. Here we report that mitochondrial dynamics have a profound effect on PME. A defect in fission of paternal mitochondria delays PME, whereas a defect in fusion of paternal mitochondria accelerates PME. Surprisingly, a defect in maternal mitochondrial fusion delays PME, which is reversed by a fission defect in maternal mitochondria or by increasing maternal mitochondrial membrane potential using oligomycin. Electron microscopy and tomography analyses reveal that a proportion of maternal mitochondria are compromised when they fail to fuse normally, leading to their competition for the autophagy machinery with damaged paternal mitochondria and delayed PME. Our study indicates that mitochondrial dynamics play a critical role in regulating both the kinetics and the specificity of PME

    Opioid-free anesthesia reduces the severity of acute postoperative motion-induced pain and patient-controlled epidural analgesia-related adverse events in lung surgery: randomized clinical trial

    Get PDF
    BackgroundOpioids have been used as pain relievers for thousands of years. However, they may also cause undesirable side effects. We therefore performed this study to compare the effect of opioid-free anesthesia (OFA) versus opioid-sparing anesthesia (OSA) on postoperative pain and patient-controlled epidural analgesia (PCEA)-related events.MethodsThis is a single center randomized clinical trial that was recruited patients aged from 18 to 70 years who received video-assisted lung surgery between October 2021 and February 2022. Participants were 1:1 randomly assigned to OFA or OSA. Patients in the OFA group received propofol, rocuronium, esmolol, lidocaine, and magnesium sulfate intravenously with epidural ropivacaine. Patients in the OSA group received propofol, rocuronium, remifentanil, and sufentanil intravenously with epidural hydromorphone and ropivacaine.ResultsA total number of 124 patients were randomly allocated to the OFA or OSA group. In the OFA group, the severity of pain during coughs on the first postoperative days (PODs; VAS score 1.88 ± 0.88 vs. 2.16 ± 1.1, p = 0.044) was significantly lower than that in the OSA group. The total ratio of PCEA-related adverse events in the OFA group [11 (19.6%) vs. 26 (47.3%), p = 0.003] was significantly lower than in the OSA group.ConclusionOFA in patients who received video-assisted lung surgery led to lower severity of acute postoperative motion-induced pain and fewer PCEA-related adverse events on the first POD than in the patients in the OSA group.Clinical trial registrationclinicaltrials.gov, identifier (NCT05063396)

    Linking Incomplete Reprogramming to the Improved Pluripotency of Murine Embryonal Carcinoma Cell-Derived Pluripotent Stem Cells

    Get PDF
    Somatic cell nuclear transfer (SCNT) has been proved capable of reprogramming various differentiated somatic cells into pluripotent stem cells. Recently, induced pluripotent stem cells (iPS) have been successfully derived from mouse and human somatic cells by the over-expression of a combination of transcription factors. However, the molecular mechanisms underlying the reprogramming mediated by either the SCNT or iPS approach are poorly understood. Increasing evidence indicates that many tumor pathways play roles in the derivation of iPS cells. Embryonal carcinoma (EC) cells have the characteristics of both stem cells and cancer cells and thus they might be the better candidates for elucidating the details of the reprogramming process. Although previous studies indicate that EC cells cannot be reprogrammed into real pluripotent stem cells, the reasons for this remain unclear. Here, nuclei from mouse EC cells (P19) were transplanted into enucleated oocytes and pluripotent stem cells (P19 NTES cells) were subsequently established. Interestingly, P19 NTES cells prolonged the development of tetraploid aggregated embryos compared to EC cells alone. More importantly, we found that the expression recovery of the imprinted H19 gene was dependent on the methylation state in the differential methylation region (DMR). The induction of Nanog expression, however, was independent of the promoter region DNA methylation state in P19 NTES cells. A whole-genome transcriptome analysis further demonstrated that P19 NTES cells were indeed the intermediates between P19 cells and ES cells and many interesting genes were uncovered that may be responsible for the failed reprogramming of P19 cells. To our knowledge, for the first time, we linked incomplete reprogramming to the improved pluripotency of EC cell-derived pluripotent stem cells. The candidate genes we discovered may be useful not only for understanding the mechanisms of reprogramming, but also for deciphering the transition between tumorigenesis and pluripotency
    corecore