35 research outputs found

    On Improving the Accuracy and Reliability of GPS/INS-Based Direct Sensor Georeferencing

    Get PDF
    Due to the complementary error characteristics of the Global Positioning System (GPS) and Inertial Navigation System (INS), their integration has become a core positioning component, providing high-accuracy direct sensor georeferencing for multi-sensor mobile mapping systems. Despite significant progress over the last decade, there is still a room for improvements of the georeferencing performance using specialized algorithmic approaches. The techniques considered in this dissertation include: (1) improved single-epoch GPS positioning method supporting network mode, as compared to the traditional real-time kinematic techniques using on-the-fly ambiguity resolution in a single-baseline mode; (2) customized random error modeling of inertial sensors; (3) wavelet-based signal denoising, specially for low-accuracy high-noise Micro-Electro-Mechanical Systems (MEMS) inertial sensors; (4) nonlinear filters, namely the Unscented Kalman Filter (UKF) and the Particle Filter (PF), proposed as alternatives to the commonly used traditional Extended Kalman Filter (EKF). The network-based single-epoch positioning technique offers a better way to calibrate the inertial sensor, and then to achieve a fast, reliable and accurate navigation solution. Such an implementation provides a centimeter-level positioning accuracy independently on the baseline length. The advanced sensor error identification using the Allan Variance and Power Spectral Density (PSD) methods, combined with a wavelet-based signal de-noising technique, assures reliable and better description of the error characteristics, customized for each inertial sensor. These, in turn, lead to a more reliable and consistent position and orientation accuracy, even for the low-cost inertial sensors. With the aid of the wavelet de-noising technique and the customized error model, around 30 percent positioning accuracy improvement can be found, as compared to the solution using raw inertial measurements with the default manufacturer’s error models. The alternative filters, UKF and PF, provide more advanced data fusion techniques and allow the tolerance of larger initial alignment errors. They handle the unknown nonlinear dynamics better, in comparison to EKF, resulting in a more reliable and accurate integrated system. For the high-end inertial sensors, they provide only a slightly better performance in terms of the tolerance to the losses of GPS lock and orientation convergence speed, whereas the performance improvements are more pronounced for the low-cost inertial sensors

    Structure and tanning properties of dialdehyde carboxymethyl cellulose: Effect of degree of substitution

    Get PDF
    Content: Developing novel tanning agents from renewable biomass is regarded as an effective strategy for sustainable leather industry. In this study, a series of dialdehyde carboxymethyl cellulose (DCMC) were prepared by periodate oxidation of carboxymethyl cellulose (CMC) with varying degrees of substitution (DS: 0.7, 0.9 and 1.2). The structural properties of DCMC were characterized. Size Exclusive Chromatography measurements showed that CMC underwent severe degradation during periodate oxidation, resulting in the decline of weight-average molecular weight from 250,000 g/mol to around 13,000 g/mol. FT-IR analysis illustrated that aldehyde group was successfully introduced into DCMC. The aldehyde group content of DCMC decreased from 8.38 mmol/g to 2.95 mmol/g as the DS rose from 0.7 to 1.2. Interestingly, formaldehyde was found to be produced in DCMC, and its content was 159.4, 151.7 and 38.4 mg/L, respectively when the DS of CMC was 0.7, 0.9 and 1.2, respectively. Further analysis by HPLC found that fructose was formed during oxidative degradation, and was subsequently oxidized to generate formaldehyde. This was in accordance with the fact that higher DS resulted in lower formaldehyde content in DCMC. The whole reaction mechanism is still under investigation at the moment. Tanning trials showed that the shrinkage temperature and thickening rate of DCMC tanned leather decreased as the DS increased. This should be due to the difference in aldehyde content of DCMC. Leather tanned by DCMC-0.7 (DS of CMC was 0.7) had the highest shrinkage temperature of 81°C and thickening rate of 76%. It was noteworthy that the formaldehyde content in DCMC tanned leather was only 0.11-0.40 mg/kg even though DCMC contained a small amount of formaldehyde. In general, we hope the work on dialdehyde tanning agent derived from CMC could provide some essential data for the development of sustainable tanning material and process. Take-Away: 1. Higher degree of substitution (DS) of CMC resulted in lower aldehyde group content of DCMC. 2. The formaldehyde content of DCMC was negatively correlated with DS. 3. The tanning performance of DCMC with lower DS was better

    Nitrogen-Doped Hierarchical Porous Activated Carbon Derived from Paddy for High-Performance Supercapacitors

    Get PDF
    A facile and environmentally friendly fabrication is proposed to prepare nitrogen-doped hierarchical porous activated carbon via normal-pressure popping, one-pot activation and nitrogen-doping process. The method adopts paddy as carbon precursor, KHCO3 and dicyandiamide as the safe activating agent and nitrogen dopant. The as-prepared activated carbon presents a large specific surface area of 3025 m2·g−1 resulting from the synergistic effect of KHCO3 and dicyandiamide. As an electrode material, it shows a maximum specific capacitance of 417 F·g−1 at a current density of 1 A·g−1 and very good rate performance. Furthermore, the assembled symmetric supercapacitor presents a large specific capacitance of 314.6 F·g−1 and a high energy density of 15.7 Wh·Kg−1 at 1 A·g−1, maintaining 14.4 Wh·Kg−1 even at 20 A·g−1 with the energy density retention of 91.7%. This research demonstrates that nitrogen-doped hierarchical porous activated carbon derived from paddy has a significant potential for developing a high-performance renewable supercapacitor and provides a new route for economical and large-scale production in supercapacitor application

    The Systemic Immune Inflammatory Index Predicts No-Reflow Phenomenon after Primary Percutaneous Coronary Intervention in Older Patients with STEMI

    Get PDF
    Purpose: Coronary no-reflow phenomenon (NRP), a common adverse complication in patients with ST-segment elevation myocardial infarction (STEMI) treated by percutaneous coronary intervention (PCI), is associated with poor patient prognosis. In this study, the correlation between the systemic immune-inflammation index (SII) and NRP in older patients with STEMI was studied, to provide a basis for early identification of high-risk patients and improve their prognosis.Materials and methods: Between January 2017 and June 2020, 578 older patients with acute STEMI admitted to the Department of Cardiology of Hebei General Hospital for direct PCI treatment were selected for this retrospective study. Patients were divided into an NRP group and normal-flow group according to whether NRP occurred during the operation. Clinical data and the examination indexes of the two groups were collected. Logistic regression was used to analyze the independent predictors of NRP, and the receiver operating characteristic curve was used to further analyze the ability of SII to predict NRP in older patients with STEMI.Results: Multivariate logistic analysis indicated that hypertension (OR=2.048, 95% CI:1.252–3.352, P=0.004), lymphocyte count (OR=0.571, 95% CI:0.368–0.885, P=0.012), platelet count (OR=1.009, 95% CI:1.005–1.013, P<0.001), hemoglobin (OR=1.015, 95% CI:1.003–1.028, P=0.018), multivessel disease (OR=2.237, 95% CI:1.407–3.558, P=0.001), and SII≥1814 (OR=3.799, 95% CI:2.190–6.593, P<0.001) were independent predictors of NRP after primary PCI in older patients with STEMI. Receiver operating characteristic curve analysis demonstrated that SII had a high predictive value for NRP (AUC=0.738; 95% CI:0.686–0.790), with the best cut-off value of 1814, a sensitivity of 52.85% and a specificity of 85.71%.Conclusion: For older patients with STEMI undergoing primary PCI, SII is a valid predictor of NRP

    Variable structure control for a singular biological economic model with time delay and stage structure

    No full text
    Abstract A singular biological economic model which considers a prey-predator system with time delay and stage structure is proposed in this paper. The local stability at the equilibrium point and the dynamic behavior of the model are studied. Local stability analysis of the model without time delay reveals that there is a phenomenon of singularity-induced bifurcation due to the economic equilibrium. Furthermore, the phenomenon of Hopf bifurcation of the model at the boundary equilibrium point occurs as the time delay satisfies certain conditions. In order to apply variable structure control to eliminate the complex behaviors caused by singularity-induced bifurcation, the singular model is transformed into a single-input and single-output model with parameter varying within definite intervals. Then variable structure control with sliding mode based on a power reaching law is designed to stabilize the model. Numerical simulations are given to verify the effectiveness of the conclusions

    Structure and tanning properties of dialdehyde carboxymethyl cellulose: Effect of degree of substitution

    Get PDF
    Content: Developing novel tanning agents from renewable biomass is regarded as an effective strategy for sustainable leather industry. In this study, a series of dialdehyde carboxymethyl cellulose (DCMC) were prepared by periodate oxidation of carboxymethyl cellulose (CMC) with varying degrees of substitution (DS: 0.7, 0.9 and 1.2). The structural properties of DCMC were characterized. Size Exclusive Chromatography measurements showed that CMC underwent severe degradation during periodate oxidation, resulting in the decline of weight-average molecular weight from 250,000 g/mol to around 13,000 g/mol. FT-IR analysis illustrated that aldehyde group was successfully introduced into DCMC. The aldehyde group content of DCMC decreased from 8.38 mmol/g to 2.95 mmol/g as the DS rose from 0.7 to 1.2. Interestingly, formaldehyde was found to be produced in DCMC, and its content was 159.4, 151.7 and 38.4 mg/L, respectively when the DS of CMC was 0.7, 0.9 and 1.2, respectively. Further analysis by HPLC found that fructose was formed during oxidative degradation, and was subsequently oxidized to generate formaldehyde. This was in accordance with the fact that higher DS resulted in lower formaldehyde content in DCMC. The whole reaction mechanism is still under investigation at the moment. Tanning trials showed that the shrinkage temperature and thickening rate of DCMC tanned leather decreased as the DS increased. This should be due to the difference in aldehyde content of DCMC. Leather tanned by DCMC-0.7 (DS of CMC was 0.7) had the highest shrinkage temperature of 81°C and thickening rate of 76%. It was noteworthy that the formaldehyde content in DCMC tanned leather was only 0.11-0.40 mg/kg even though DCMC contained a small amount of formaldehyde. In general, we hope the work on dialdehyde tanning agent derived from CMC could provide some essential data for the development of sustainable tanning material and process. Take-Away: 1. Higher degree of substitution (DS) of CMC resulted in lower aldehyde group content of DCMC. 2. The formaldehyde content of DCMC was negatively correlated with DS. 3. The tanning performance of DCMC with lower DS was better

    Structure and tanning properties of dialdehyde carboxymethyl cellulose: Effect of degree of substitution

    No full text
    Content: Developing novel tanning agents from renewable biomass is regarded as an effective strategy for sustainable leather industry. In this study, a series of dialdehyde carboxymethyl cellulose (DCMC) were prepared by periodate oxidation of carboxymethyl cellulose (CMC) with varying degrees of substitution (DS: 0.7, 0.9 and 1.2). The structural properties of DCMC were characterized. Size Exclusive Chromatography measurements showed that CMC underwent severe degradation during periodate oxidation, resulting in the decline of weight-average molecular weight from 250,000 g/mol to around 13,000 g/mol. FT-IR analysis illustrated that aldehyde group was successfully introduced into DCMC. The aldehyde group content of DCMC decreased from 8.38 mmol/g to 2.95 mmol/g as the DS rose from 0.7 to 1.2. Interestingly, formaldehyde was found to be produced in DCMC, and its content was 159.4, 151.7 and 38.4 mg/L, respectively when the DS of CMC was 0.7, 0.9 and 1.2, respectively. Further analysis by HPLC found that fructose was formed during oxidative degradation, and was subsequently oxidized to generate formaldehyde. This was in accordance with the fact that higher DS resulted in lower formaldehyde content in DCMC. The whole reaction mechanism is still under investigation at the moment. Tanning trials showed that the shrinkage temperature and thickening rate of DCMC tanned leather decreased as the DS increased. This should be due to the difference in aldehyde content of DCMC. Leather tanned by DCMC-0.7 (DS of CMC was 0.7) had the highest shrinkage temperature of 81°C and thickening rate of 76%. It was noteworthy that the formaldehyde content in DCMC tanned leather was only 0.11-0.40 mg/kg even though DCMC contained a small amount of formaldehyde. In general, we hope the work on dialdehyde tanning agent derived from CMC could provide some essential data for the development of sustainable tanning material and process. Take-Away: 1. Higher degree of substitution (DS) of CMC resulted in lower aldehyde group content of DCMC. 2. The formaldehyde content of DCMC was negatively correlated with DS. 3. The tanning performance of DCMC with lower DS was better

    Effect of cationic monomer structure on the aggregation behavior of amphoteric acrylic polymer around isoelectric point

    No full text
    Abstract Amphoteric polymer can be used as retanning agent in leather manufacture. It is particularly useful in chrome-free tanning systems since it can regulate the charge properties of chrome-free leather and enhance the fixation of anionic post-tanning chemicals in leather. However, the aggregation and precipitation of amphoteric polymer retanning agents around the isoelectric point (pI) hinder their wide application. Herein, we synthesized five amphoteric acrylic polymers (AAPs) by free radical copolymerization with acrylic acid and five different cationic acrylic monomers. The effect of cationic monomer structure on the aggregation behavior of AAPs was investigated. The aggregation of AAPs in aqueous solution showed pH and concentration dependence. Light scattering analysis showed that Poly (AA-co-MAPTAC) and Poly (AA-co-DMAPMA) were in the shape of coiled linear flexible chains with small particle size (Rg 7.6 nm and 14.8 nm, respectively) near the pI. However, Poly (AA-co-DAC), Poly (AA-co-DMC) and Poly (AA-co-DMAEMA) were in the shape of hollow spheres and exhibited serious aggregation. Quantum chemical calculations suggested that the amide groups in the cationic monomers MAPTAC and DMAPMA enhanced the nucleophilicity of AAPs. Thus the corresponding AAPs could carry a large number of cationic charges to slow their aggregation when the pH just climbed over the pI. The results are expected to provide theoretical reference for the synthesis and widespread application of AAPs
    corecore