375 research outputs found

    Microscopic theory of the proximity effect in superconductor-graphene nanostructures

    Full text link
    We present a theoretical analysis of the proximity effect at a graphene-superconductor interface. We use a tight-binding model for the electronic states in this system which allows to describe the interface at the microscopic level. Two different interface models are proposed: one in which the superconductor induces a finite pairing in the graphene regions underneath, thus maintaining the honeycomb structure at the interface and one that assumes that the graphene layer is directly coupled to a bulk superconducting electrode. We show that properties like the Andreev reflection probability and its channel decomposition depend critically on the model used to describe the interface. We also study the proximity effect on the local density of states on the graphene. For finite layers we analyze the induced minigap and how it is reduced when the length of the layer increases. Results for the local density of states profiles for finite and semi-infinite layers are presented.Comment: 9 pages, 7 figures, submitted to Phys. Rev.

    Transport in superlattices on single layer graphene

    Full text link
    We study transport in undoped graphene in the presence of a superlattice potential both within a simple continuum model and using numerical tight-binding calculations. The continuum model demonstrates that the conductivity of the system is primarily impacted by the velocity anisotropy that the Dirac points of graphene develop due to the potential. For one-dimensional superlattice potentials, new Dirac points may be generated, and the resulting conductivities can be approximately described by the anisotropic conductivities associated with each Dirac point. Tight-binding calculations demonstrate that this simple model is quantitatively correct for a single Dirac point, and that it works qualitatively when there are multiple Dirac points. Remarkably, for a two dimensional potential which may be very strong but introduces no anisotropy in the Dirac point, the conductivity of the system remains essentially the same as when no external potential is present.Comment: 8 pages, 7 figures, submitted to Phys. Rev.

    Charge Detection in a Closed-Loop Aharonov-Bohm Interferometer

    Get PDF
    We report on a study of complementarity in a two-terminal "closed-loop" Aharonov-Bohm interferometer. In this interferometer, the simple picture of two-path interference cannot be applied. We introduce a nearby quantum point contact to detect the electron in a quantum dot inserted in the interferometer. We found that charge detection reduces but does not completely suppress the interference even in the limit of perfect detection. We attribute this phenomenon to the unique nature of the closed-loop interferometer. That is, the closed-loop interferometer cannot be simply regarded as a two-path interferometer because of multiple reflections of electrons. As a result, there exist indistinguishable paths of the electron in the interferometer and the interference survives even in the limit of perfect charge detection. This implies that charge detection is not equivalent to path detection in a closed-loop interferometer. We also discuss the phase rigidity of the transmission probability for a two-terminal conductor in the presence of a detector.Comment: 4 pages with 4 figure

    Non-equilibrium dynamics of Andreev states in the Kondo regime

    Full text link
    The transport properties of a quantum dot coupled to superconducting leads are analyzed. It is shown that the quasiparticle current in the Kondo regime is determined by the non-equilibrium dynamics of subgap states (Andreev states) under an applied voltage. The current at low bias is suppressed exponentially for decreasing Kondo temperature in agreement with recent experiments. We also predict novel interference effects due to multiple Landau-Zener transitions between Andreev states.Comment: Revtex4, 4 pages, 4 figure

    Magnetoresistance of atomic-sized contacts: an ab-initio study

    Full text link
    The magnetoresistance (MR) effect in metallic atomic-sized contacts is studied theoretically by means of first-principle electronic structure calculations. We consider three-atom chains formed from Co, Cu, Si, and Al atoms suspended between semi-infinite Co leads. We employ the screened Korringa-Kohn-Rostoker Green's function method for the electronic structure calculation and evaluate the conductance in the ballistic limit using the Landauer approach. The conductance through the constrictions reflects the spin-splitting of the Co bands and causes high MR ratios, up to 50%. The influence of the structural changes on the conductance is studied by considering different geometrical arrangements of atoms forming the chains. Our results show that the conductance through s-like states is robust against geometrical changes, whereas the transmission is strongly influenced by the atomic arrangement if p or d states contribute to the current.Comment: Revised version, presentation of results is improved, figure 2 is splitted to two figure

    The phase-dependent linear conductance of a superconducting quantum point contact

    Full text link
    The exact expression for the phase-dependent linear conductance of a weakly damped superconducting quantum point contact is obtained. The calculation is performed by summing up the complete perturbative series in the coupling between the electrodes. The failure of any finite order perturbative expansion in the limit of small voltage and small quasi-particle damping is analyzed in detail. In the low transmission regime this nonperturbative calculation yields a result which is at variance with standard tunnel theory. Our result predicts the correct sign of the quasi-particle pair interference term and exhibits an unusual phase-dependence at low temperatures in qualitative agreement with the available experimental data.Comment: 12 pages (revtex) + 1 postscript figure. Submitted to Phys. Rev. Let

    Interplay between Josephson effect and magnetic interactions in double quantum dots

    Full text link
    We analyze the magnetic and transport properties of a double quantum dot coupled to superconducting leads. In addition to the possible phase transition to a π\pi state, already present in the single dot case, this system exhibits a richer magnetic behavior due to the competition between Kondo and inter-dot antiferromagnetic coupling. We obtain results for the Josephson current which may help to understand recent experiments on superconductor-metallofullerene dimer junctions. We show that in such a system the Josephson effect can be used to control its magnetic configuration.Comment: 5 pages, 4 figure

    Dynamics of quasiparticle trapping in Andreev levels

    Get PDF
    We present a theory describing the trapping and untrapping of quasiparticles in the Andreev bound level of a single-channel weak link between two superconductors. We calculate the rates of the transitions between even and odd occupations of the Andreev level induced by absorption and emission of both photons and phonons. We apply the theory to a recent experiment [Phys. Rev. Lett. 106, 257003 (2011)] in which the dynamics of the trapping of quasiparticles in the Andreev levels of superconducting atomic contacts coupled to a Josephson junction was measured. We show that the plasma energy hνph\nu_p of the Josephson junction defines a rather abrupt transition between a fast relaxation regime dominated by coupling to photons and a slow relaxation regime dominated by coupling to phonons. With realistic parameters the theory provides a semi-quantitative description of the experimental results.Comment: 11 pages, 9 figures. Accepted for publication in Physical Review

    Dynamical Coulomb Blockade of Multiple Andreev Reflections

    Get PDF

    A Quantum Dot in the Kondo Regime Coupled to Superconductors

    Get PDF
    The Kondo effect and superconductivity are both prime examples of many-body phenomena. Here we report transport measurements on a carbon nanotube quantum dot coupled to superconducting leads that show a delicate interplay between both effects. We demonstrate that the superconductivity of the leads does not destroy the Kondo correlations on the quantum dot when the Kondo temperature, which varies for different single-electron states, exceeds the superconducting gap energy
    corecore