17 research outputs found

    The farnesoid X receptor regulates transcription of 3 beta-hydroxysteroid dehydrogenase type 2 in human adrenal cells

    Get PDF
    Recent studies have shown that the adrenal cortex expresses high levels of farnesoid X receptor (FXR), but its function remains not known. Herein, using microarray technology, we tried to identify candidate FXR targeting genes in the adrenal glands, and showed that FXR regulates 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2) expression in human adrenocortical cells. We further demonstrated that FXR stimulated HSD3B2 promoter activity and have defined the cis-element responsible for FXR regulation of HSD3B2 transcription. Transfection of H295R adrenocortical cells with FXR expression vector effectively increased FXR expression levels and additional treatment with chenodeoxycholic acid (CDCA) caused a 25-fold increase in the mRNA for organic solute transporter alpha (OSTα), a known FXR target gene. HSD3B2 mRNA levels also increased following CDCA treatment in a concentration-dependent manner. Cells transfected with a HSD3B2 promoter construct and FXR expression vector responded to CDCA with a 20-fold increase in reporter activity compared to control. Analysis of constructs containing sequential deletions of the HSD3B2 promoter suggested a putative regulatory element between -166 and -101. Mutation of an inverted repeat between -137 and -124 completely blocked CDCA/FXR induced reporter activity. Chromatin immunoprecipitation assays further confirmed the presence of a FXR response element in the HSD3B2 promoter. In view of the emerging role of FXR agonists as therapeutic treatment of diabetes and certain liver diseases, the effects of such agonists on other FXR expressing tissues should be considered. Our findings suggest that in human adrenal cells, FXR increases transcription and expression of HSD3B2. Alterations in this enzyme would influence the capacity of the adrenal gland to produce corticosteroids

    Production of Fibrinolytic Enzyme from Bacillus amyloliquefaciens by Fermentation of Chickpeas, with the Evaluation of the Anticoagulant and Antioxidant Properties of Chickpeas

    No full text
    To develop safe and cheap thrombolytic agents, a fibrinolytic enzyme productive strain of LSSE-62 was isolated from Chinese soybean paste. This strain was identified as Bacillus amyloliquefaciens by 16S rDNA sequence analysis. Nucleotide and amino acid sequence analysis showed that this fibrinolytic enzyme was identical to subtilisin DJ-4. Chickpeas were used as the substrate for fibrinolytic enzyme production from B. amyloliquefaciens in solid-state fermentation. Under the optimized conditions (34 degrees C and 50% initial moisture content), the fibrinolytic activity of fermented chickpeas reached 39.28 fibrin degradation units (FU)/g. Additionally, the fermented chickpeas showed anticoagulant activity, and the purified anticoagulant component showed higher anticoagulant activity than heparin sodium. After fermentation, the total phenolic and total flavonoid contents increased by 222 and 71%, respectively, and then the antioxidant activities were improved significantly. This study provided a novel method for the preparation of multifunctional food of chickpeas or raw materials for the preparation of functional food additives and potential drugs

    Toll-like receptors TLR2 and TLR4 block the replication of pancreatic β cells in diet-induced obesity

    No full text
    Consumption of a high-energy Western diet triggers mild adaptive β cell proliferation to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. In the present study we show that the toll-like receptors TLR2 and TLR4 inhibited the diet-induced replication of β cells in mice and humans. The combined, but not the individual, loss of TLR2 and TLR4 increased the replication of β cells, but not that of α cells, leading to enlarged β cell area and hyperinsulinemia in diet-induced obesity. Loss of TLR2 and TLR4 increased the nuclear abundance of the cell cycle regulators cyclin D2 and Cdk4 in a manner dependent on the signaling mediator Erk. These data reveal a regulatory mechanism controlling the proliferation of β cells in diet-induced obesity and suggest that selective targeting of the TLR2/TLR4 pathways may reverse β cell failure in patients with diabetes.</p

    Toll-like receptors 2 and 4 control adaptive β-cell expansion in diet-induced obesity

    No full text
    Adult pancreatic β cells are refractory to proliferation, a roadblock for the treatment of insulin-deficient diabetes. Consumption of energy-dense Western or high-fat diet (HFD) triggers mild adaptive β cell mass expansion to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. Here we show that Toll-like receptors (TLR) 2/TLR4 act as molecular “brakes” for diet-induced β cell replication in both mice and humans. The combined loss of TLR2/TLR4, but not individually, dramatically increases facultative β, not α, cell replication, leading to progressively enlarged islet mass and hyperinsulinemia in diet-induced obesity. Mechanistically, loss of TLR2/TLR4 increases β cell proliferation and nuclear abundance of Cyclin D2 and CDK4 in an extracellular signal-regulated kinase (ERK)-dependent manner. These data reveal a novel mechanism governing adaptive β cell mass expansion in diet-induced obesity and suggest that selective targeting of TLR2/TLR4 pathways may hold promise for reversing β cell failure in diabetic patients

    The Mediator Complex Subunit 1 Enhances Transcription of Genes Needed for Adrenal Androgen Production

    No full text
    There are three enzymes involved in the biosynthesis of the adrenal androgen dehydroepiandrosterone (DHEA) sulfate. Cholesterol side-chain cleavage (CYP11A1) and 17α-hydroxylase/17,20-lyase (CYP17) metabolize cholesterol into DHEA, whereas steroid sulfotransferase family 2A1 (SULT2A1) is responsible for conversion of DHEA to DHEA sulfate. We previously examined the mechanisms regulating CYP11A1, CYP17, and SULT2A1 transcription and found that each is regulated, in part, by the transcription factor GATA-6. Previous studies suggested that mediator complex subunit 1 (MED1, also called PPARBP or TRAP220) is a cofactor involved in not only the regulation of nuclear receptors but also the activation of GATA-6 transcription. Herein we demonstrated a role for MED1 in the regulation of CYP11A1, CYP17, and SULT2A1 transcription. Transient transfection assays with SULT2A1 deletion and mutation promoter constructs allowed the determination of specific the GATA-6 binding cis-regulatory elements necessary for transactivation of SULT2A1 transcription. Binding of MED1 and GATA-6 was confirmed by coimmunoprecipitation/Western analysis and chromatin immunoprecipitation assay. We demonstrated expression of MED1 mRNA and protein in the human adrenal and determined that knockdown of MED1 expression via specific small interfering RNA attenuated CYP11A1, CYP17, and SULT2A1 expression levels in H295R cells. In addition, we demonstrated that MED1 enhanced GATA-6 stimulated transcription of promoter constructs for each of these genes. Moreover, the activity of MED1 for SULT2A1 promoter was mediated by GATA-6 via the −190 GATA-binding site. These data support the hypothesis that MED1 and GATA-6 are key regulators of SULT2A1 expression, and they play important roles in adrenal androgen production

    Toll-like receptors 2 and 4 control adaptive β-cell expansion in diet-induced obesity

    No full text
    Adult pancreatic β cells are refractory to proliferation, a roadblock for the treatment of insulin-deficient diabetes. Consumption of energy-dense Western or high-fat diet (HFD) triggers mild adaptive β cell mass expansion to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. Here we show that Toll-like receptors (TLR) 2/TLR4 act as molecular “brakes” for diet-induced β cell replication in both mice and humans. The combined loss of TLR2/TLR4, but not individually, dramatically increases facultative β, not α, cell replication, leading to progressively enlarged islet mass and hyperinsulinemia in diet-induced obesity. Mechanistically, loss of TLR2/TLR4 increases β cell proliferation and nuclear abundance of Cyclin D2 and CDK4 in an extracellular signal-regulated kinase (ERK)-dependent manner. These data reveal a novel mechanism governing adaptive β cell mass expansion in diet-induced obesity and suggest that selective targeting of TLR2/TLR4 pathways may hold promise for reversing β cell failure in diabetic patients
    corecore