22 research outputs found

    Inhibition of Arabidopsis thaliana CIN-like TCP transcription factors by Agrobacterium T-DNA-encoded 6B proteins

    Get PDF
    Agrobacterium T-DNA-encoded 6B proteins cause remarkable growth effects in plants. Nicotiana otophora carries two cellular T-DNAs with three slightly divergent 6b genes (TE-1-6b-L, TE-1-6b-R and TE-2-6b) originating from a natural transformation event. In Arabidopsis thaliana, expression of 2×35S:TE-2-6b, but not 2×35S:TE-1-6b-L or 2×35S:TE-1-6b-R, led to plants with crinkly leaves, which strongly resembled mutants of the miR319a/TCP module. This module is composed of MIR319A and five CIN-like TCP (TEOSINTHE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR) genes (TCP2, TCP3, TCP4, TCP10 and TCP24) targeted by miR319a. The CIN-like TCP genes encode transcription factors and are required for cell division arrest at leaf margins during development. MIR319A overexpression causes excessive growth and crinkly leaves. TE-2-6b plants did not show increased miR319a levels, but the mRNA levels of the TCP4 target gene LOX2 were decreased, as in jaw-D plants. Co-expression of green fluorescent protein (GFP)-tagged TCPs with native or red fluorescent protein (RFP)-tagged TE-6B proteins led to an increase in TCP protein levels and formation of numerous cytoplasmic dots containing 6B and TCP proteins. Yeast double-hybrid experiments confirmed 6B/TCP binding and showed that TE-1-6B-L and TE-1-6B-R bind a smaller set of TCP proteins than TE-2-6B. A single nucleotide mutation in TE-1-6B-R enlarged its TCP-binding repertoire to that of TE-2-6B and caused a crinkly phenotype in Arabidopsis. Deletion analysis showed that TE-2-6B targets the TCP4 DNA-binding domain and directly interferes with transcriptional activation. Taken together, these results provide detailed insights into the mechanism of action of the N. otophora TE-encoded 6b genes.Fil: Potuschak, Thomas. Centre National de la Recherche Scientifique. Institut de Biologie MolĂ©culaire des Plantes; FranciaFil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; ArgentinaFil: Schommer, Carla. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; ArgentinaFil: Sierro, Nicolas. Pmi R&d, Philip Morris Products S. A.; SuizaFil: Ivanov, Nicolai. Pmi R&d, Philip Morris Products S. A.; SuizaFil: Kwon, Yerim. Centre National de la Recherche Scientifique. Institut de Biologie MolĂ©culaire des Plantes; FranciaFil: Genschik, Pascal. Centre National de la Recherche Scientifique. Institut de Biologie MolĂ©culaire des Plantes; FranciaFil: Daviere, Jean-Michel. Centre National de la Recherche Scientifique. Institut de Biologie MolĂ©culaire des Plantes; FranciaFil: Otten, Leoon. Centre National de la Recherche Scientifique. Institut de Biologie MolĂ©culaire des Plantes; Franci

    Hypovigilance Detection for UCAV Operators Based on a Hidden Markov Model

    Get PDF
    With the advance of military technology, the number of unmanned combat aerial vehicles (UCAVs) has rapidly increased. However, it has been reported that the accident rate of UCAVs is much higher than that of manned combat aerial vehicles. One of the main reasons for the high accident rate of UCAVs is the hypovigilance problem which refers to the decrease in vigilance levels of UCAV operators while maneuvering. In this paper, we propose hypovigilance detection models for UCAV operators based on EEG signal to minimize the number of occurrences of hypovigilance. To enable detection, we have applied hidden Markov models (HMMs), two of which are used to indicate the operators' dual states, normal vigilance and hypovigilance, and, for each operator, the HMMs are trained as a detection model. To evaluate the efficacy and effectiveness of the proposed models, we conducted two experiments on the real-world data obtained by using EEG-signal acquisition devices, and they yielded satisfactory results. By utilizing the proposed detection models, the problem of hypovigilance of UCAV operators and the problem of high accident rate of UCAVs can be addressed

    Hypovigilance Detection for UCAV Operators Based on a Hidden Markov Model

    Get PDF
    With the advance of military technology, the number of unmanned combat aerial vehicles (UCAVs) has rapidly increased. However, it has been reported that the accident rate of UCAVs is much higher than that of manned combat aerial vehicles. One of the main reasons for the high accident rate of UCAVs is the hypovigilance problem which refers to the decrease in vigilance levels of UCAV operators while maneuvering. In this paper, we propose hypovigilance detection models for UCAV operators based on EEG signal to minimize the number of occurrences of hypovigilance. To enable detection, we have applied hidden Markov models (HMMs), two of which are used to indicate the operators’ dual states, normal vigilance and hypovigilance, and, for each operator, the HMMs are trained as a detection model. To evaluate the efficacy and effectiveness of the proposed models, we conducted two experiments on the real-world data obtained by using EEG-signal acquisition devices, and they yielded satisfactory results. By utilizing the proposed detection models, the problem of hypovigilance of UCAV operators and the problem of high accident rate of UCAVs can be addressed

    Arabidopsis Serine Decarboxylase Mutants Implicate the Roles of Ethanolamine in Plant Growth and Development

    Get PDF
    Ethanolamine is important for synthesis of choline, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) in plants. The latter two phospholipids are the major phospholipids in eukaryotic membranes. In plants, ethanolamine is mainly synthesized directly from serine by serine decarboxylase. Serine decarboxylase is unique to plants and was previously shown to have highly specific activity to l-serine. While serine decarboxylase was biochemically characterized, its functions and importance in plants were not biologically elucidated due to the lack of serine decarboxylase mutants. Here we characterized an Arabidopsis mutant defective in serine decarboxylase, named atsdc-1 (Arabidopsis thaliana serine decarboxylase-1). The atsdc-1 mutants showed necrotic lesions in leaves, multiple inflorescences, sterility in flower, and early flowering in short day conditions. These defects were rescued by ethanolamine application to atsdc-1, suggesting the roles of ethanolamine as well as serine decarboxylase in plant development. In addition, molecular analysis of serine decarboxylase suggests that Arabidopsis serine decarboxylase is cytosol-localized and expressed in all tissue

    Personal Passive Air Samplers for Chlorinated Gases Generated from the Use of Consumer Products

    No full text
    Various chlorine-based disinfectants are being used during the COVID-19 pandemic; however, only a few studies on exposure to harmful gases resulting from the use of these disinfectants exist. Previously, we developed a personal passive air sampler (PPAS) to estimate the exposure level to chlorine gas while using chlorinated disinfectants. Herein, we investigated the color development of the passive sampler corresponding to chlorine exposure concentration and time, which allows the general population to easily estimate their gas exposure levels. The uptake and reaction rate of PPAS are also explained, and the maximum capacity of the sampler was determined as 1.8 mol of chlorine per unit volume (m3) of the passive sampler. Additionally, the effects of disinfectant types on the gas exposure level were successfully assessed using passive samplers deployed in a closed chamber. It is noteworthy that the same level of chlorine gas is generated from liquid household bleach regardless of dilution ratios, and we confirmed that the chlorine gas can diffuse out from a gel-type disinfectant. Considering that this PPAS reflects reactive gas removal, individual working patterns, and environmental conditions, this sampler can be successfully used to estimate personal exposure levels of chlorinated gases generated from disinfectants

    Thermal control of oxygen-induced emission states in carbon dots for indoor lighting applications

    No full text
    © 2022 Elsevier Ltd. Understanding the role of heteroatoms in carbon dots (CDs) has been recognized as a critical factor for the design and engineering of their optical properties. Oxygen is one of the most prevalent heteroatom defects in CDs; however, its effects on the optical properties are still unclear because it has not been possible to precisely control the degree of oxidation of CDs. Here, we report the synthesis of CDs in a controlled process that allows thermal control of the oxygen content using benzyl alcohol as an oxidizing solvent. The results suggest that oxygen-induced defects reduce the optical band gap of CDs, and their emission is red-shifted from blue (428 nm) to red (628 nm). The photoexcited charge-carrier dynamics of the CDs were thoroughly studied using transient absorption spectroscopy and fluorescence decay measurements. Furthermore, the bright multicolored emission of our CDs renders them suitable for sun-like panchromatic indoor lighting applications. We believe that these new insights into oxygen-induced defects in CDs will result in significant progress in their practical use.11Nsciescopu

    New DRB complexes for new DRB functions in plants

    No full text
    <p>Double-stranded RNA binding (DRB) proteins are generally considered as promoting cofactors of Dicer or Dicer-like (DCL) proteins that ensure efficient and precise production of small RNAs, the sequence-specificity guide of RNA silencing processes in both plants and animals. However, the characterization of a new clade of DRB proteins in Arabidopsis has recently challenged this view by showing that DRBs can also act as potent inhibitors of DCL processing. This is achieved through sequestration of a specific class of small RNA precursors, the endogenous inverted-repeat (endoIR) dsRNAs, thereby selectively preventing production of their associated small RNAs, the endoIR-siRNAs. Here, we concisely summarize the main findings obtained from the characterization of these new DRB proteins and discuss how the existence of such complexes can support a potential, yet still elusive, biological function of plant endoIR-siRNAs.</p

    High-throughput Screening with Deep Learning for Quantitative Phenotype Analysis of Zebrafish

    No full text
    Zebrafish is a useful biological model for analyzing genetic modification and large-scale screening. Its morphological evaluation, carrying meaningful information about genotype-phenotype relationship, is equally important. However, analysis of large amounts across development stages is a labor-intensive task. Here, we suggest a high-throughput monitoring technique using office scanner. Moreover, we developed deep learning models for extraction and analysis of massive statistical information. CNN-based architecture, forming the core of segmentation, serves as a basis for quantitative analysis and an early signal for embryo???s abnormal growth. Finally, compared to conventional microscope imaging, our scanning technique offers high-throughput, accurate, and fast quantitative phenotype analysis
    corecore