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With the advance ofmilitary technology, the number of unmanned combat aerial vehicles (UCAVs) has rapidly increased.However,
it has been reported that the accident rate of UCAVs is much higher than that of manned combat aerial vehicles. One of the main
reasons for the high accident rate of UCAVs is the hypovigilance problem which refers to the decrease in vigilance levels of UCAV
operators while maneuvering. In this paper, we propose hypovigilance detection models for UCAV operators based on EEG signal
to minimize the number of occurrences of hypovigilance. To enable detection, we have applied hidden Markov models (HMMs),
two of which are used to indicate the operators’ dual states, normal vigilance and hypovigilance, and, for each operator, the HMMs
are trained as a detection model. To evaluate the efficacy and effectiveness of the proposed models, we conducted two experiments
on the real-world data obtained by using EEG-signal acquisition devices, and they yielded satisfactory results. By utilizing the
proposed detection models, the problem of hypovigilance of UCAV operators and the problem of high accident rate of UCAVs can
be addressed.

1. Introduction

Over the last decade, the advances in military technology
have brought widespread proliferation of unmanned combat
aerial vehicles (UCAVs) which can deliver weapons or attack
targets without on-board operators [1, 2]. They have not only
enabled an operator to control aerial vehicle(s) in a remote
manner, contributing to the decrease of human casualties,
but also expanded operational ranges of surveillance and
reconnaissance [3]. UCAVs, however, have shown a high
accident rate which is 10 to 100 times higher than that of
manned aerial vehicles [4], causing the operation costs to
be more than double compared to manned aerial vehicles
[5]. It is also known that, due to the complex and diverse
tasks of UCAVs, they show much higher accident rate than
unmanned aerial vehicles [6]. Therefore, the high accident
rate becomes a major concern for both UCAV operators and
their administrators.

To address the problem of the high accident rate, several
studies are conducted to investigate the causes of such high
accident rate [7, 8]. These studies suggest that almost 20% of
accidents related to UCAVs are due to erroneous decision-
making resulting fromhuman factors such as lack of situation
awareness and heavy workload [9]. In particular, one of the
main reasons for the high accident rate is reported to be the
occurrence of the hypovigilance phenomenon [10].

Vigilance refers to a mental state where an operator
maintains attention while performing tasks over prolonged
periods of time [11] and vigilance level changes continuously
during the course of the operation [12]. As such, vigilance
level of an operator can become lower over time, and this
phenomenon is known as the hypovigilance. Furthermore,
vigilance level of an operator is known to get lowered
even when the operator is highly motivated [13]. Therefore,
careful consideration needs to be taken in order to prevent
hypovigilance by maintaining the operator’s vigilance at
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a desirable level. In case of traffic accidents, it has been
reported that about 25% of road crashes are caused by
hypovigilance of car drivers [14]. Also, hypovigilance can
cause a serious decrease in task performance of operators [15].

As aforementioned, hypovigilance is one of the major
causes of accidents in the operation of UCAVs resulting in
high cost of operations; it is therefore critical for UCAV oper-
ators who suffer from lower tension levels due to increasing
fatigue to sustain an appropriate vigilance level [10]. For these
reasons, detecting hypovigilance of UCAV operators is not
only an important topic for research but also one of the key
factors in operating UCAVs. Three types of operators are
usually involved in UCAV operations which include a pilot,
a mission specialist, and a flight director [16]. Among them,
in this paper, hypovigilance of a UCAV pilot who maneuvers
the vehicle him/herself is considered.

Two important characteristics should be considered in
developing hypovigilance detection models for UCAV oper-
ators. First, the process of detection should be performed
with extremely short latency. For effective recovery of the
operator’s vigilance level, hypovigilance of the operator needs
to be detected at the time of occurrence or beforehand.
Second, the detection should be conductedwithout intruding
on the operator’s tasks in any way. Since maneuvering
UCAVs usually involves several simultaneous complicated
tasks, additional burden brought by vigilance detection can
have a negative impact on the operator’s performance.

To investigate an operator’s vigilance level, we use elec-
troencephalography (EEG) signal. EEG signal which refers
to the recordings of electrical activity along the scalp is
a widely used data related to human mental states such
as vigilance [17, 18]. EEG signal is utilized in this paper
for the following reasons. First, the signal can be obtained
in a real-time manner [19], making it possible to detect
hypovigilance with short latency. Second, the signal can be
acquired without intrusion as there are several EEG-signal
acquisition devices which take the form of a headset [20].
Third, compared to other vigilance detection measures, EEG
signal contains minimal bias [21] since it directly shows
human brain activities. Therefore, by using EEG signal, the
hypovigilance of an operator can be detected with short
latency, minimal impact on his/her UCAV maneuvering
tasks, and minimal bias.

Moreover, EEG signal is composed of four frequency
bands, delta (0–3Hz), theta (4–7Hz), alpha (8–12Hz), and
beta (13–30Hz), as shown in Figure 1. They were acquired
after filtering raw EEG signal by a bandpass filter with band-
width ranging from0 to 30Hz and performingwavelet packet
decomposition [22]. An example of EEG signal of an operator
is shown in Figure 2, where the four lines, respectively,
indicate normalized amplitudes of the four frequency bands,
and the sequences enclosed by arrows are signals generated
from an operator in case of hypovigilance. Among constantly
changing amplitudes of EEG signal, the sequences of EEG
signal enclosed by the four arrows show particularly drastic
differences between maximum and minimum amplitudes.
As such, learning the pattern of EEG signals according
to vigilance levels by using statistical learning method is
expected to be effective. Note that hypovigilance states in
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Figure 1: Frequency ranges of the four bands, delta (0–3Hz), theta
(4–7Hz), alpha (8–12Hz), and beta (13–30Hz), of EEG signal.
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Figure 2: Example of EEG signal for an operator, where sequences
enclosed by arrows indicate hypovigilance states of the operator.

the graph were marked manually by the subject involved
in the experiment for illustrative purpose since there is no
unanimously agreed measure of vigilance levels.

Nevertheless, detecting hypovigilance ofUCAVoperators
based on EEG signal is challenging because of the following
reasons. First, EEG signal is sequential and nonstationary
data,meaning that it varies depending onwhen it ismeasured
[23], and the signal patterns change rapidly over time [24, 25].
Second, it is almost impossible to obtain labels which indicate
vigilance levels for every interval of EEG signal since constant
intervention should be avoided. Last but not least, EEG signal
is specific to an individual, meaning that it generates different
patterns depending on operators [26]. For the last reason, a
hypovigilance detection model which is appropriate for one
operator cannot be applied to other operators.

In this paper, we exploit hiddenMarkovmodels (HMMs)
to develop hypovigilance detection models for UCAV oper-
ators using EEG signal. HMMs which utilize probabilistic
models of sequential data have been used in a variety of
machine learning applications. Several studies show that
HMMs are appropriate for modeling EEG signal due to their
ability to deal with dynamics in observation sequences [27,
28].
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Table 1: Previously proposed hypovigilance detection methods categorized based on the data type used in studies along with their
characteristics.

Data type Data example Characteristic Reference

Survey data Karolinska sleepiness scale (KSS) Easy to obtain and understand;
existence of possible bias; intrusive [34, 35]

Physical data Eye blink duration; eye blink amplitude;
amplitude and velocity ratio of eye blink

Possible to be real time; less intrusive;
existence of possible bias [30, 36]

Performance data Road center position; steering wheel
angle; vehicle velocity

Possible to be real time; less intrusive;
existence of possible bias [31, 37]

Biological data
Electroencephalography (EEG);
electrocardiogram (ECG);
electrooculography (EOG)

Possible to be real time; less intrusive;
less bias; sensitive to environment [33, 39, 40]

Particularly, to alleviate the problem of unavailability of
labels for EEG signal, we adopt the hypothesis that higher
vigilance level is required to perform more difficult tasks
as suggested by Galin et al. [29]. Specifically, the vigilance
levels of EEG signal generated while performing relatively
difficult tasks and easy tasks are labeled as normal vigilance
and hypovigilance, respectively. The clear difference among
the difficulty levels of distinct UCAV tasks compared to that
of UAVs due to the diversity of the tasks can contribute
to the accurate labeling of hypovigilance, resulting in better
detection performance.

In addition, twoHMMs are then trained to represent each
of the two levels. Then, the detection model based on the two
trainedHMMs is used to detect hypovigilance of an operator.
This process is performed for each individual operator in
order to consider the different patterns of EEG signal for each
operator.

This paper is organized as follows. In Section 2, stud-
ies related to hypovigilance detection methods and EEG-
signal classification methods are presented. Then, HMM-
based detectionmodels for hypovigilance of UCAVoperators
are proposed in Section 3 along with a brief introduction
of HMMs and their fundamental algorithms. In Section 4,
two sets of experiments are conducted, one experiment for
validation of the vigilance level hypothesis and the other for
performance evaluation of the proposed models. Lastly, this
paper is concluded in Section 5.

2. Literature Review

2.1. Hypovigilance Detection Methods. To the best of the
authors’ knowledge, there is limited direct research on
hypovigilance detection of UCAV operators. However, sev-
eral research efforts have been made for the detection of
hypovigilance in other areas such as car driving [30–32] and
game playing [33]. These studies can be classified into four
categories depending on the data used for the detection,
survey data, physical data, performance data, and biological
data as shown in Table 1.

Survey data is usually collected during or after a given
operation through self-assessment by the operators using
predefined scales for vigilance levels such as the Karolinska
sleepiness scale [34]. In spite of the convenience in col-
lecting survey data, it has a drawback as pointed out in

Craig et al. [35] that psychological factors can affect the self-
assessed data, resulting in discrepancy between the actual vig-
ilance level and the self-assessed vigilance level. We note that
obtaining survey data in the process of maneuvering UCAVs
is intrusive to the operator’s tasks and nearly impossible to be
done in real time as well.

To mitigate the problem of studies using survey data,
several efforts have been made using physical data or task
performance data. These methods usually intend to exploit
observed data with the assumption that the vigilance level of
an operator induces changes in physical features or task per-
formance. Various physical data including duration, ampli-
tude, and velocity of eye blinking [30, 36] and performance
data such as road center position and vehicle velocity [31, 37]
are used for the detection of hypovigilance. Even though
these types of data can be acquired in real time in a less
intrusive manner, there still exists an inherent bias between
the actual vigilance level and the conjectured vigilance level
from physical or performance data [38] due to weather
conditions or level of difficulty of the tasks.

Biological data such as EEG, electrocardiogram (ECG),
and electrooculography (EOG) are also used as indicators of
hypovigilance in several studies [39–41]. Although biological
data is sensitive to stimulus from environment, causing noises
[42], it can be obtained in a less intrusive manner possibly in
real time. Moreover, since the biological data can be used as
an external indicator of human brain activities, bias between
actual and conjectured vigilance levels tends to be small.

Among the biological data, EEG signal is widely accepted
as an effective and efficient indicator of the transition between
wakefulness and sleep as well as between the different sleep
stages [43]. Furthermore, EEG signal shows different patterns
depending on various actions or mental states, and it is
used for monitoring dynamic fluctuations in cognitive states
including vigilance level and mental workload [39, 44].

2.2. EEG-Signal Classification Methods. Diverse classifiers
have been used in EEG-signal classification, and these clas-
sifiers can be divided into two types, static classifiers and
dynamic classifiers. Static classifiers categorize an instance
based on a single feature vector, while dynamic classifiers
find the optimal category for an instance by considering a
sequence of feature vectors over a time period [24].Moreover,
the dynamic classifiers are known to be more appropriate
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Table 2: Previous studies on EEG-signal classification categorized into static and dynamic classifiers presented with their methods and
applications.

Category Reference Classification method Application
Static [46] Support vector machines; neural networks Emotion detection
Static [48] Näıve Bayes; Fisher discriminant analysis Emotion detection
Static [44] Support vector machines Driver drowsiness detection
Static [17] Support vector machines; Gaussian mixture model; neural network Epileptic activity detection
Dynamic [50] HMMs Driver drowsiness detection
Dynamic [49] Time-delay neural network; gamma neural network EEG-signal change detection
Dynamic [51] HMM; input-output HMM Mental task classification

in modeling sequential information [45]. Table 2 shows
previous studies for classifying EEG signal in terms of their
classifier type, methods, and applications.

For static classifiers with EEG signal, support vector
machines and neural networks are applied to classify the state
of emotion into several groups [46, 47], and naive Bayes and
Fisher discriminant analysis are also used to detect arousal of
emotion [48]. In Yeo et al. [44], support vector machines are
used to detect the driver’s drowsiness during car driving, and
Faust et al. [17] applied support vector machines, Gaussian
mixture models, and neural networks for the detection of
epileptic activity by using EEG signal.

On the other hand, various dynamic classifiers have been
employed in the domains where sequential information is
important for EEG-signal classification. Barreto et al. [49]
present time-delay neural networks and gamma neural net-
works for classifying changes in EEG signal that is generated
by voluntary movement. HMMs are applied to detect the
changes in the vehicle driver’s state of arousal [50], and
variations of HMMs called input-outputHMMs are also used
to distinguish EEG-signal changes between three cognitive
andmotor-relatedmental tasks [51].They consider a situation
where the distribution of the output variables and the states
are dependent on input variables.

Several studies which compare static and dynamic clas-
sifiers have suggested that the dynamic classifiers show
more promising results than the static classifiers when
noises are found in the data. Obermaier et al. [52] present
HMMs for online classification of single trial EEG signal
generated by intension for left- or right-hand movement.
They show that a HMM-based model outperforms linear
discriminant analysis-based model in terms of error rates
through experiments. In addition, Št’astný et al. [53] classify
EEG signal into two types of movements, the distal and the
proximal movements, using HMMs and neural networks and
demonstrate that the performances of HMMs are better than
those of neural networks.

As such, HMMs have been widely used for classifying
EEG signal. Doroshenkov et al. [54] conduct EEG-signal clas-
sification of human sleep stages based on HMMs and show
reliable identification accuracy of the main stages of sleep.
Furthermore, Lederman and Tabrikian [55] demonstrate that
HMMs are suitable for detecting nonstationary changes of
EEG signal and suggest that HMMs are one of the best
methods for time series classification.

3. Hypovigilance Detection Models for
UCAV Operators

3.1. Problem Definition. In this section, we present the hyp-
ovigi-lance detection problem of UCAV operators by intro-
ducing formal notations for operators, tasks, and sequences
of EEG signal.

We denote a set of operators by 𝑂 = {𝑜
𝑚
| 𝑚 = 1, . . . ,𝑀}

where𝑀 indicates the number of operators considered in the
problem. Each operator performs a set of tasks, denoted by
𝑇 = {𝑡

𝑛
| 𝑛 = 1, . . . , 𝑁}, where 𝑁 represents the number

of tasks, and a task 𝑡
𝑛
is composed of a set of steps 𝜎

𝑛𝑘
for

𝑘 = 1, . . . , 𝐾, where𝐾 indicates the number of steps in a task.
Each task has a predefined difficulty level which takes one of
two possible values, easy or difficult. As such, a sequence of
the EEG signal which is generated from the 𝑚th operator,
𝑜
𝑚
, who has completed the 𝑛th task, 𝑡

𝑛
, is denoted by 𝐸

𝑚𝑛
,

which is composed of e
𝑚𝑛𝑙

, a vector of EEG-signal values from
multiple channels at time 𝑙 such that 𝑙 = 1, . . . , 𝐿.

According to the hypothesis on the relation between the
difficulty level of a task and the corresponding vigilance
level, the state of an EEG-signal sequence generated while
performing difficult or easy tasks is assumed to be normal
vigilance or hypovigilance, respectively. The vigilance level
of an EEG-signal sequence, 𝐸

𝑚𝑛
, is denoted by ]

𝑚𝑛
∈

{+, −} where plus sign indicates normal vigilance and minus
sign indicates hypovigilance. Therefore, a set of EEG-signal
sequences obtained from 𝑜

𝑚
, denoted by E

𝑚
= {𝐸
𝑚𝑛

| 𝑛 =

1, . . . , 𝑁}, is divided into two sets, one of normal vigilance
EEG-signal sequences, E+

𝑚
, and the other of hypovigilance

EEG-signal sequences, E−
𝑚
.

In this paper, the HMM-based hypovigilance detection
problem for UCAV operators refers to developing models
which classify the vigilance levels of EEG-signal sequences
into one of the two states, normal vigilance or hypovigi-
lance. Specifically, given a sequence of EEG signal from 𝑜

𝑚

performing 𝑡
𝑛
󸀠 , 𝐸
𝑚𝑛
󸀠 = e

𝑚𝑛
󸀠
1
e
𝑚𝑛
󸀠
2
, . . . , e

𝑚𝑛
󸀠
𝐿
, the hypovigi-

lance detection model determines the vigilance level of the
sequence, ]

𝑚𝑛
󸀠 , by means of trained HMMs which have been

constructed using E+
𝑚
and E−

𝑚
.

3.2. Continuous HMM-Based Hypovigilance Detection. For
the hypovigilance detection models of UCAV operators, we
adopt HMMswhich are widely used statistical learning based
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classification methods [45].They are statistical Markov mod-
els which assume the Markov property, where the next state
is determined only by the current one, not by previous states,
and they have been successfully applied to various sequential
data processing problems such as speech recognition [56] and
signal processing [57].

In this paper, by considering that an EEG-signal sequence
is a sequence of continuous values, continuous HMMs are
employed for the detection. A continuous HMM is denoted
by Λ = (𝑆,𝑋, 𝐴, 𝐵, Π) where 𝑆,𝑋, 𝐴, 𝐵, andΠ represent a set
of hidden states, a set of observation values, a state transition
probabilitymatrix, an observation probability densitymatrix,
and an initial state probability vector, respectively.

Specifically, 𝐴 = [𝑎
𝑖𝑗
] is a matrix of state transition

probabilities whose element 𝑎
𝑖𝑗
represents the probability of

transition from state 𝑠
𝑖
to state 𝑠

𝑗
for 𝑖, 𝑗 = 1, . . . , 𝐺, and it is

calculated as

𝑎
𝑖𝑗
= 𝑃 (𝑞

𝑙+1
= 𝑠
𝑗
| 𝑞
𝑙
= 𝑠
𝑖
) , (1)

where 𝑞
𝑙
, 𝑙 = 1, . . . , 𝐿−1, is a state at time 𝑙 and𝐺 is the number

of possible states.
Moreover, 𝐵 = [𝑏

𝑗
(x)] is a matrix of observation

probability densities, and each element 𝑏
𝑗
(x) represents the

probability density of emitting observation vector x in state
𝑠
𝑗
for x ∈ R𝑘 where 𝑘 indicates the dimension of x and

𝑗 = 1, . . . , 𝐺. It is represented by the following equation:

𝑏
𝑗
(x) = 𝑓 (𝑒

𝑙
= x | 𝑞

𝑙
= 𝑠
𝑗
) , (2)

where 𝑒
𝑙
, 𝑙 = 1, . . . , 𝐿, is an observation made at time 𝑙.

Π = [𝜋
𝑖
] is a vector of initial state probabilities, whose

element 𝜋
𝑖
, 𝑖 = 1, . . . , 𝐺, is calculated by the following

equation:

𝜋
𝑖
= 𝑃 (𝑞

𝑙
= 𝑠
𝑖
) , (3)

which indicates the probability that the initial state of a
sequence is 𝑠

𝑖
.

Figure 3 shows an example of continuous HMMs with
two states, 𝑠

1
and 𝑠

2
. From the continuous HMM, Λ =

(𝑆,𝑋, 𝐴, 𝐵, Π), two different kinds of sequences are generated.
The first one is a state sequence denoted by 𝑄 = 𝑞

1
𝑞
2
, . . . , 𝑞

𝐿
,

which is composed of unobservable elements from a set of
hidden states 𝑆. The second one is an observation sequence
denoted by 𝐸 = e

1
e
2
, . . . , e

𝐿
, which is generated from

aforementioned state sequence according to the observation
probability density of each state.

For the detection of hypovigilance from EEG signal by
using HMMs, two approaches can be applied. First, state-
based approach regards states as vigilance levels so that
single or multiple states indicate a single level. Second, the
model-based approach associates an HMM with a specific
vigilance level. The latter approach has been used in a variety
of domains including EEG-signal classification for mental
fatigue [40] and trend analysis of technologies [58]. In this
paper, both approaches are adopted in such a way that
the state-based approach is used to validate the vigilance
level hypothesis and the model-based approach is used for
constructing hypovigilance detection models.
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Figure 3: Example of continuous HMM with two states.

In the state-based approach, an HMM, Λ =

(𝑆,𝑋, 𝐴, 𝐵, Π), is trained with a set of observation sequences,
E, regardless of their classes to estimate the parameters of
the HMM, 𝐴, 𝐵, and Π, such that the most likely sequence
of hidden states, 𝑄, of a given observation sequence, 𝐸, can
be identified. To this end, various algorithms in the frame of
expectation-maximization algorithm [59] are exploited such
as Baum-Welch algorithm [60] and 𝑘-means algorithm [61].
After an HMM is trained, Viterbi algorithm [62] is used to
find the most likely 𝑄 of the given 𝐸 from the trained Λ.

In the model-based approach which considers the same
number of HMMs as that of vigilance levels, an obser-
vation sequence is classified as a level represented by the
HMM which has the highest likelihood for that sequence.
Observation sequences of the same level are used to train
the corresponding HMM by means of the same training
algorithms used in the state-based approach. We note that
the likelihood of an observation sequence, 𝐸, with a trained
HMM, Λ, 𝑓(𝐸 | Λ), is determined by using the forward or
backward procedures [45].

3.3. Hypovigilance Detection Models. In this section, we
describe the HMM-based hypovigilance detection models
constructed in this paper. As aforementioned, hypovigilance
which refers to a mental state of an operator below a desired
vigilance level tends to occur in the process of performing
relatively undemanding tasks.

Observation values in a sequence of EEG signal are
assumed to be mutually independent and to follow the
Gaussian distribution.The Gaussian distribution assumption
has been widely used for modeling of EEG signal in several
studies [24, 63]. Particularly, since the observation values
in this work are a vector composed of continuous values
generated from EEG channels, the observation probability
densities are assumed to follow a multivariate Gaussian
distribution with known mean, 𝜇

𝑗
, and variance, Σ

𝑗
, 𝑗 =

1, . . . , 𝐺, where 𝐺 indicates the number of possible states.
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Figure 4: Overview of the HMM-based hypovigilance detection models including model training phase and model testing phase for two
HMMs, ℎ-HMM, and 𝑛-HMM.

Considering that EEG-signal patterns vary depending
on individuals [26], we construct a specific detection model
for each UCAV operator. In detail, EEG-signal sequences
acquired from an operator are considered as observation
sequences representing his/her mental state and only these
are used to train the operator’s detection model. Moreover,
we utilize two HMMs for a detection model of an operator,
corresponding to two different vigilance levels. Figure 4
shows the overview of how the twoHMMs (e.g., 𝑛-HMMand
ℎ-HMM)play a role in detecting hypovigilance of an operator
by using EEG-signal sequences obtained from the operator.
The process of hypovigilance detection can be divided into
two phases, the modeling phase and the detection phase.

In the modeling phase, two HMMs are trained by using
EEG-signal sequences to estimate the parameters of each
HMM. Specifically, EEG signal is collected from an operator,
𝑜
𝑚
, and preprocessed from EEG-signal extraction tools.

Appropriate features are then selected, which are sequences
of EEG-signal, 𝑒

𝑚𝑛𝑙
, for all 𝑙 = 1, . . . , 𝐿, generated while

the operator performs tasks, 𝑡
𝑚
, for all 𝑚 = 1, . . . ,𝑀.

The two HMMs, 𝑛-HMM and ℎ-HMM, for 𝑜
𝑚
are trained

by using respective EEG-signal sequence sets, E+
𝑚
and E−

𝑚
,

which are categorized in advance.The 𝑛-HMM is denoted by
Λ
+

𝑚
= (𝑆
+

𝑚
, 𝑋
+

𝑚
, 𝐴
+

𝑚
, 𝐵
+

𝑚
, Π
+

𝑚
), while ℎ-HMM is denoted by

Λ
−

𝑚
= (𝑆
−

𝑚
, 𝑋
−

𝑚
, 𝐴
−

𝑚
, 𝐵
−

𝑚
, Π
−

𝑚
). Their parameters are estimated

bymeans of 𝑘-means algorithm [61] whose initial parameters
are set to random values between maximum and minimum
observation values.

In the detection phase, the likelihood of a given sequence,
𝐸
𝑚𝑛
󸀠 , for two trained HMMs is calculated, and the vigilance

level of 𝐸
𝑚𝑛
󸀠 is determined by comparing the likelihood of

the two. The likelihoods, 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
ℎ
and 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑛
, are

defined as 𝑓(𝐸
𝑚𝑛
󸀠 | Λ
−

𝑚
) and 𝑓(𝐸

𝑚𝑛
󸀠 | Λ
+

𝑚
), respectively. As

such, the vigilance level of𝐸
𝑚𝑛
󸀠 is determined by the following

equation:

Class (𝐸
𝑚𝑛
󸀠) = argmax]∈{−,+}𝑓 (𝐸

𝑚𝑛
󸀠 | Λ

]
𝑚
) , (4)

whereClass(𝐸
𝑚𝑛
󸀠) is a function that returns the vigilance level

of 𝐸
𝑚𝑛
󸀠 .

Aforementioned procedures of vigilance level classifica-
tion are shown in Algorithm 1.

4. Experiments

In this section, we present two experiments to illustrate
the efficacy and efficiency of the HMM-based hypovigilance
detectionmodels.The first phase of the experiment intends to
validate the hypothesis on the vigilance level, which suggests
that the vigilance level of an operator becomes higher as the
operator encounters more difficult tasks, while it becomes
lower when the operator encounters relatively easy tasks.
Second, accuracies of the proposed detection models are
assessed by using EEG signal acquired from more complex
settings to evaluate the performances of the detectionmodels.

4.1. Adoptability Validation. To validate the adoption of the
vigilance level hypothesis suggested in [29] to our problem,
trends in the vigilance levels of the operators with respect to
the difficulty levels of tasks are observed by computing state
transition probabilities from the state-based classification of
EEG-signal sequences obtained from operators.

4.1.1. Dataset. EEG signal was recorded from two subjects
who are both right-handed males, aged twenty-four and
twenty-eight, respectively, by using EEG-signal acquisition
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Input: E+
𝑖
, E−
𝑖
, 𝐸
𝑚𝑛
󸀠

Output: V
𝑚𝑛
󸀠 ⊳ Vigilance level of 𝐸

𝑚𝑛
󸀠

(1) procedure BuildHMM(E+
𝑖
, E−
𝑖
) ⊳ Building two HMMs for all operators

(2) for 𝑖 ∈ {1, . . . ,𝑀} do
(3) for V ∈ {+, −} do
(4) Λ

V
𝑖
← TrainHMM(EV

𝑖
) ⊳ Training an HMM by using EV

𝑖

(5) end for
(6) end for
(7) end procedure
(8) procedure Class(𝐸

𝑚𝑛
󸀠 ) ⊳ Detecting vigilance level of 𝐸

𝑚𝑛
󸀠

(9) for 𝑖 ∈ {1, . . . ,𝑀} do
(10) if 𝑖 = 𝑚 then ⊳ Selecting a model for the𝑚th operator
(11) for V ∈ {+, −} do
(12) calculate 𝑓(𝐸

𝑚𝑛
󸀠 | Λ

V
𝑚
) ⊳ Calculating a likelihood

(13) end for
(14) end if
(15) end for
(16) V

𝑚𝑛
󸀠 ← argmaxV (𝑓(𝐸𝑚𝑛󸀠 | Λ

V
𝑚
))

(17) return V
𝑚𝑛
󸀠 ⊳ Returning obtained vigilance level

(18) end procedure

Algorithm 1: Pseudocode for detecting the vigilance level of a given EEG-signal sequence, 𝐸
𝑚𝑛
󸀠 , of an operator, 𝑜

𝑚
, performing a task, 𝑡

𝑛
󸀠 .

AF3

F7

AF4

F8
F4F3

FC5 FC6

T7 T8

P7 P8

O1 O2

Figure 5: Diagram showing the positions of the 14 channels, where
EEG signal was recorded by EEG-signal acquisition device, Emotiv
EPOC.

device, Emotiv EPOC [20]. Emotiv EPOC is a nonintrusive
brain computer interface tool, which extracts EEG signal
from 14 channels located in different positions of the scalp,
O1, O2, P7, P8, T7, T8, FC5, FC6, F7, F8, F3, F4, AF3, and
AF4, according to the international 10–20 system as shown
in Figure 5. Each EEG-signal sequence used in this paper is
a vector composed of power spectrum values generated from
the 14 channels aforementioned. The signals during the first
and the last 5 seconds of the experiments and the signals

determined to contain noises from visual inspections were
truncated. In the ratio of 2 : 1, the signals were randomly
divided into training and test datasets.

The two subjects performed four types of tasks with
different levels of difficulty, which include cruising, taking
off, landing, and emergency landing according to the level of
difficulty from low to high. The tasks are provided by a flight
simulator called Falcon 4.0 [27] and are designed to be similar
to those of real UCAVs. The order of the level of difficulty of
the different tasks was judged by an expert UCAV operator.

4.1.2. Vigilance Level Trends. In this experiment, to find the
trends between the vigilance level of an operator and the
level of difficulty of a given task, the state probability of each
state is obtained, where the state probability indicates the
probability of being in a certain state in a HMM. States 1
and 2 are associated with the cases of normal vigilance and
hypovigilance, respectively.

Changes in state probabilities of states 1 and 2 according
to the difficulty level of the tasks for two subjects, operator
1 and operator 2, are illustrated in Figure 6. The numbers in
the horizontal axis indicate the difficulty level of tasks, where 1
means the least difficult task, while 4 means the most difficult
one. From the experiment results, it can be observed that
operator 1 has maintained the same vigilance level regardless
of the difficulty level of the tasks as the state probability of
state 2 ranges between 0.8 and 1.0 for all difficulty levels,
which are always above those of state 1. On the other hand, the
vigilance level of operator 2 has changed when the operator
performed the most difficult task.

Moreover, the state probability of state 1 is increased as the
difficulty level of a task increases. By performing correlation
analysis, it is shown that there is a positive correlation
between the difficulty level of a task and the vigilance
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Figure 6: Experiment results showing the trends in state probabilities of (a) operator 1 and (b) operator 2 while performing tasks with various
difficulty levels, where 1 indicates the least difficult task and 4 indicates the most difficult one.

level of an operator at the 5% significance level. The result
corresponds to the research by [29], where the vigilance level
and the task difficulty are shown to be positively correlated.

4.2. Model Evaluation. In this section, the performance of
the proposed hypovigilance detection models is evaluated by
using EEG signal obtained from subjects while performing
tasks in Falcon 4.0 with two levels of difficulty.

4.2.1. Dataset. For the evaluation, experiments with five
subjects have been conducted. The detailed information
on the subject participated and experiment environment
is presented in Table 3. In order to make the experiments
similar to the real-world situation, we have carefully chosen
the five subjects. One of the subjects is a pilot and four
of the subjects have much experience in operating flight
simulators. They have also been trained before participating
in the experiments.

Subjects performed tasks provided from Falcon 4.0 flight
simulator by means of a joystick and a keyboard on a cockpit.
Specifically, there were two joysticks for steering and two
screens for displaying information relevant to the flight status.
In addition to the visually transmitted information, subjects
also received audio signal from the control tower through a
headset.

For obtaining the EEG signal, a device called Mindset,
one of the commercial EEG-signal acquisition devices for
researchers and developers, is utilized.The device is equipped
with four electrodes on its headset, where the electrodes
are placed on the forehead of a subject. Note that we have
altered EEG-signal acquisition device to provide comfortable
experiment environment through utilizing smaller number
of electrodes of Mindset compared to that of Emotiv EPOC.
Nonetheless, the experiment results are the same since EEG

Table 3: Description of five subjects participated in the experiments
and experiment environment.

Age Sleep hours (hrs) Recent
disorder

Temperature (∘C)
margin of error ± 1

1 30 6 Headache 26.5
2 31 7 None 26.5
3 28 5 None 26
4 26 8 None 25.5
5 28 8 None 25.5

signal acquired by both devices has been shown to have
no significant difference [20]. Besides, even if there exist
minor differences, it does not affect the performances of the
proposed model as long as training and test data is generated
from the sameEEG-signal acquisition device. After collecting
EEG signal, noises from the surface scalp of the subjects
were removed by a noise removal function embedded in the
device, and artifact rejection was conducted through visual
inspection.

According to the level of difficulty, six tasks, landing,
emergency landing, air-to-air combat, taking off, missile
launch, and navigation, were divided into two groups, result-
ing in landing, emergency landing, and air-to-air combat to
be in the difficult task group and the rest of tasks in the
easy task group. The detailed steps involved in each task
are shown in Tables 4 and 5. Figure 7 depicts the overall
data acquisition process of the experiment. The five subjects
repeatedly performed the procedure 10 times, and each
time, two groups of tasks were performed, the difficult task
group and easy task group. To prevent the effect of fatigue
while maneuvering, there were five-minute breaks between
consecutive tasks.
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Table 4: Subordinate steps of tasks with a high level of difficulty, landing, emergency landing, and air-to-air combat.

Step Landing Emergency landing Air-to-air combat
1 Request permission to land Warn reset Switch to 2D cockpit view
2 Check assigned runway Throw abandoned armaments Select air-to-air radar mode
3 Check current speed/pitch Check current speed/pitch Keep speed/altitude/direction
4 Check current altitude Keep speed/pitch Check target on the radar
5 Landing gear down Declare emergency landing Target lock on
6 Decelerate Landing gear down Launch
7 Keep speed/pitch Speed brake open Check speed/altitude/direction
8 Flare Check the tires touch down Search target
9 Check the tires touch down Hold pitch attitude Flare

Table 5: Subordinate steps of tasks with a low level of difficulty, taking off, missile launch, and navigation.

Step Takeoff Missile launch Navigation
1 Check permission to takeoff Switch A-G mode Set up steer point/time
2 Set throttle to max Masters arm on Set up speed/altitude/direction
3 Check current speed Select armaments Keep speed/altitude/direction
4 Pitch up Missile on Check remaining distance
5 Check speed Remove lens cover Check arrival at steer point
6 Landing gear up Seeker on Set up other steer points/time
7 Check radar Check launch zone indicator Turn
8 Enter orbit Target lock on
9 Check speed/altitude

Table 6: Confusion matrix for vigilance level classification.

Predicted positive Predicted negative
Actual positive True positive (TP) False negative (FN)
Actual negative False positive (FP) True negative (TN)

4.2.2. Evaluation Measure. To evaluate the performance of
the proposed models, accuracy is used as an evaluation
criterion which is one of the widely used measures to assess
the classification capability of a model. It computes the
degree of correctly classified instances by a model based on
a confusion matrix that shows the number of correct and
incorrect predications compared to the actual levels.

In a confusion matrix for the vigilance level classification
shown in Table 6, TP (true positive) refers to the number
of correctly detected hypovigilance instances, whereas FP
(false positive) indicates the number of falsely detected
hypovigilance instances. Similarly, TN (true negative) and FN
(false negative), respectively, means the number of correctly
and incorrectly detected normal-vigilance instances. Based
on the confusion matrix, accuracy is calculated as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
. (5)

4.2.3. Experiment Results. For comparison purposes, four
types of models, DM1, DM2, DM3, and DM4, and additional
“All” model were implemented. The models differ from each
other in terms of training ratio, 50%and67%, and the number
of states in HMMs, two and three, as summarized in Table 7.

Table 7: Summary of the four models, DM1, DM2, DM3, and DM4,
in terms of the number of states in HMMs and training ratio.

Classifier The number of states in HMMs Training ratio (%)
DM1 2 50
DM2 2 67
DM3 3 50
DM4 3 67

In addition, “All” model differs from the four models since
it is trained by using aggregated sequences of EEG signal
generated from all operators, while others use signals from
individual operators for training separately.

Specifically, hypovigilance detection models proposed in
this paper utilized observed data for training to learn patterns
of EEG signal indicating vigilance levels. Determining the
ratio of the training data to the whole data, called the
training ratio, is important as there is a tradeoff between
performance improvement and overfitting problem. In the
previous literatures, training ratios between 50% and 80% are
widely used [64]. Therefore, in our research, we have chosen
two types of training ratio, 50% and 67%, for comparison.

We have chosen two and three state HMMs for com-
parison since they are most widely used and successfully
applied to diverse domains [65, 66]. The number of states
in an HMM indicates hidden factors explaining vigilance
level of the HMM. For instance, when an HMM referring to
hypovigilance state is given, states in the HMM may imply
causes for the hypovigilance such as fatigue or intrusion.
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Figure 7: Data acquisition process which consists of tasks in two levels of difficulty, where each task takes about six.

While more sophisticatedmodeling of EEG-signal sequences
is possible as the number of states in an HMM increases,
an overfitting problem may occur. In case of a three-state
HMM, three distribution functions are used for modeling of
the given data, resulting in more precise modeling compared
to a two-state model as long as it is addressed properly.

The performance comparison results of the four models,
DM1, DM2, DM3, and DM4, shown in Figure 8, suggest
the following. First, hypovigilance detection models trained
by using sequences of EEG signal from a single operator
outperform a model trained by using aggregated sequences
from diverse operators. The accuracy of “All” model depicted
by a broken line and a white bar in graphs is always lower
than accuracies of all the individual operators. Second,
the suitability of adopting EEG signal based hypovigilance
detection models varies among individuals. For instance,
accuracies for operators 3 and 5 are always higher than
those of other operators, and those for operator 4 are always
the worst. Moreover, the best performing model among the
four models that were compared differs depending on the
operators. For operator 1, DM1 performed the best, while it
showed the worst performance for operator 2; in contrast,
DM3 was the best for operator 2.

Table 8 shows the accuracy improvements of four models
over “All”model averaged across operators. It can be observed
that models with the higher training ratios show better
results. In addition, on average, models with three-state
HMMs result in better performances over two-state HMMs
such that the difference of improvement between DM1 and
DM2 is about 1.5%, while that between DM3 and DM4 is
more than 10%. From the results of the one-sided t-test, it
can be concluded that accuracies of the proposed models
are expected to be higher than 0.7 at the 5% significance
level, implying that the proposed models in this paper show
satisfactory performances.

5. Conclusions

Recently, the number of operators for UCAVs has increased
with the development in military technology. The remote
control of the aerial vehicles contributes to the elimination
of human casualties and the expansion of operational ranges.

Table 8: Average improvements of the four models, DM1, DM2,
DM3, and DM4, over “All” model for each operator in terms of
accuracy.

Classifier Average improvement (%)
DM1 10.45
DM2 11.88
DM3 12.94
DM4 22.19

However, high accident rate becomes a significant issue in
deploying UCAVs. It has been revealed that one of the main
reasons for high accident rate is a hypovigilance problem
occurring when the level of vigilance declines, while an
operator is carrying out operational tasks. Considering that
an UCAV operator controls a vehicle in a remote cockpit, it
can be difficult for an operator to sustain an appropriate level
of vigilance over time. Therefore, detecting hypovigilance of
an UCAV operator is important.

To address the above problem, we proposed HMM-based
hypovigilance detection models for UCAV operators based
on EEG signal. In the models, detection is done by means
of HMMs which have capability of dealing with dynamics
in sequential data. Different detection models for individual
operators are trained, and, in each detection model, two
HMMs representing hypovigilance and normal vigilance are
utilized.

Experiments were conducted to measure the efficacy
and the effectiveness of the proposed models. From the
first set of experiments, the vigilance level hypothesis which
indicates that higher vigilance is required for performing
tasks with higher level of difficulty was validated, and the
results from the second set of experiments demonstrated that
the performance of the proposed model is satisfactory.

There are three contributions of the paper. First, to
the best of the authors’ knowledge, this research is the
first model that tries to detect hypovigilance of UCAV
operators, and we conducted an extensive survey on the
previous literatures to find the most suitable method to
address the problem. Second, we have suggested the possi-
bility of using the difficulty levels of tasks as the vigilance
levels of UCAV operators by adopting the vigilance level
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Figure 8: Accuracies of four models, DM1, DM2, DM3, and DM4, for five operators with “All” model.

hypothesis to address the problem of absence of unanimously
agreed criteria for vigilance levels. Last, we have validated
the effectiveness and robustness of the proposed method
by performing a systematic experimentation with realistic
settings, experienced subjects, and commercial EEG-signal
acquisition devices.

For future work, we intend to further develop more
sophisticated models by conducting a large-scale experiment
with more subjects and finding an optimal number of states
for HMMs to enhance the performance of hypovigilance
detection. Moreover, professional operators tend to be more
familiar with specific tasks than inexperienced persons,
requiring different criteria for measuring the difficulty levels
for the tasks. As such, when professional operators are
involved in conducting the tasks, it is necessary to consider
how to determine the different difficulty levels for tasks
for them. To obtain more precise experiment results from
different subjects, appropriate difficult levels would need to

be defined before conducting the experiments. The proposed
hypovigilance detection models can contribute to lowering
the accident costs for operations of UCAVs.
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