36 research outputs found

    TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling

    Get PDF
    In patients, non-proliferative disseminated tumour cells (DTCs) can persist in the bone marrow (BM) while other organs (such as lung) present growing metastasis. This suggested that the BM might be a metastasis ‘restrictive soil’ by encoding dormancy-inducing cues in DTCs. Here we show in a head and neck squamous cell carcinoma (HNSCC) model that strong and specific transforming growth factor-β2 (TGF-β2) signalling in the BM activates the MAPK p38α/β, inducing an (ERK/p38)low signalling ratio. This results in induction of DEC2/SHARP1 and p27, downregulation of cyclin-dependent kinase 4 (CDK4) and dormancy of malignant DTCs. TGF-β2-induced dormancy required TGF-β receptor-I (TGF-β-RI), TGF-β-RIII and SMAD1/5 activation to induce p27. In lungs, a metastasis ‘permissive soil’ with low TGF-β2 levels, DTC dormancy was short-lived and followed by metastatic growth. Importantly, systemic inhibition of TGF-β-RI or p38α/β activities awakened dormant DTCs, fuelling multi-organ metastasis. Our work reveals a ‘seed and soil’ mechanism where TGF-β2 and TGF-β-RIII signalling through p38α/β regulates DTC dormancy and defines restrictive (BM) and permissive (lung) microenvironments for HNSCC metastasis.Fil: Bragado, Paloma. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Estrada, Yeriel. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Parikh, Falguni. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Krause, Sarah. University Hospital of Schleswig-Holstein; AlemaniaFil: Capobianco, Carla Sabrina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Farina, Hernán Gabriel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schewe, Denis M.. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados UnidosFil: Aguirre Ghiso, Julio A.. Mount Sinai School of Medicine. Tisch Cancer Institute; Estados Unido

    Dormancy Signatures and Metastasis in Estrogen Receptor Positive and Negative Breast Cancer

    Get PDF
    Breast cancers can recur after removal of the primary tumor and treatment to eliminate remaining tumor cells. Recurrence may occur after long periods of time during which there are no clinical symptoms. Tumor cell dormancy may explain these prolonged periods of asymptomatic residual disease and treatment resistance. We generated a dormancy gene signature from published experimental models and applied it to both breast cancer cell line expression data as well as four published clinical studies of primary breast cancers. We found that estrogen receptor (ER) positive breast cell lines and primary tumors have significantly higher dormancy signature scores (P<0.0000001) than ER- cell lines and tumors. In addition, a stratified analysis combining all ER+ tumors in four studies indicated 2.1 times higher hazard of recurrence among patients whose tumors had low dormancy scores (LDS) compared to those whose tumors had high dormancy scores (HDS) (p<0.000005). The trend was shown in all four individual studies. Suppression of two dormancy genes, BHLHE41 and NR2F1, resulted in increased in vivo growth of ER positive MCF7 cells. The patient data analysis suggests that disseminated ER positive tumor cells carrying a dormancy signature are more likely to undergo prolonged dormancy before resuming metastatic growth. Furthermore, genes identified with this approach might provide insight into the mechanisms of dormancy onset and maintenance as well as dormancy models using human breast cancer cell lines

    A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-α

    Get PDF
    Emerging evidence points to aberrant regulation of translation as a driver of cell transformation in cancer. Given the direct control of translation by tRNA modifications, tRNA modifying enzymes may function as regulators of cancer progression. Here, we show that a tRNA methyltransferase 9‐like (hTRM9L/KIAA1456) mRNA is down‐regulated in breast, bladder, colorectal, cervix and testicular carcinomas. In the aggressive SW620 and HCT116 colon carcinoma cell lines, hTRM9L is silenced and its re‐expression and methyltransferase activity dramatically suppressed tumour growth in vivo. This growth inhibition was linked to decreased proliferation, senescence‐like G0/G1‐arrest and up‐regulation of the RB interacting protein LIN9. Additionally, SW620 cells re‐expressing hTRM9L did not respond to hypoxia via HIF1‐α‐dependent induction of GLUT1. Importantly, hTRM9L‐negative tumours were highly sensitive to aminoglycoside antibiotics and this was associated with altered tRNA modification levels compared to antibiotic resistant hTRM9L‐expressing SW620 cells. Our study links hTRM9L and tRNA modifications to inhibition of tumour growth via LIN9 and HIF1‐α‐dependent mechanisms. It also suggests that aminoglycoside antibiotics may be useful to treat hTRM9L‐deficient tumours.National Institute of Environmental Health Sciences (R01 ES015037)National Institute of Environmental Health Sciences (R01 ES017010)National Institute of Environmental Health Sciences (R21 ES017146)National Institute of Environmental Health Sciences (P30 ES002109)National Cancer Institute (U.S.) (R01 CA109182)National Cancer Institute (U.S.) (U54 CA163131)National Science Foundation (U.S.) (NSF 0922830)NYSTARWestaway Research FundSingapore-MIT Alliance for Research and TechnologySamuel Waxman Cancer Research Foundation Tumour Dormancy ProgramNYSTE

    The impact of dupilumab treatment on SARS-CoV-2 T cell responses in atopic dermatitis patients

    Get PDF
    This work was supported by the Department of Dermatology at the Icahn School of Medicine at Mount Sinai and a grant from Regeneron and Sanofi. All funding sources reviewed and accepted the study design and the manuscript, with minimal input from Regeneron and Sanofi. Research reported in this publication was also supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number U01AI152036. Paolo Cravedi was supported by a grant from the National Institute of Allergy and Infectious Diseases under Award Number 3U01AI063594-17S1.Peer reviewe

    Analysis of Marker-Defined HNSCC Subpopulations Reveals a Dynamic Regulation of Tumor Initiating Properties

    Get PDF
    Head and neck squamous carcinoma (HNSCC) tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs) in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin) surface levels and aldehyde dehydrogenase (ALDH) activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu) and NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice and chicken embryo chorioallantoic membrane (CAM) assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49fhigh/ALDH1A1high/H3K4/K27me3low subpopulation (CD49f+) of tumor cells. A strikingly similar CD49fhigh/H3K27me3low subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49fhigh/ALDHhigh, label retaining cells (LRC) proliferated immediately in vivo, with time the CD49flow/ALDHlow, non-LRC (NLRC) tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49fhigh/ALDHhigh, label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f− cells can “reprogram” and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a “moving target” and their eradication might require more persistent strategies

    Proteomic profiling of a patient with cutaneous melanoma metastasis regression following topical contact sensitizer diphencyprone and immune checkpoint inhibitor treatment

    No full text
    Abstract Immune checkpoint inhibitors (ICIs) such as pembrolizumab have revolutionized the treatment of advanced melanoma, but many patients do not respond to ICIs alone, and thus there is need for additional treatment options. Topical immunomodulators such as diphencyprone (DPCP) also have clinical use in advanced melanoma, particularly in the treatment of cutaneous metastases. In a previous report, we characterized the enhanced clinical response to dual agent immunotherapy with pembrolizumab and DPCP in a patient with cutaneous melanoma metastases. To improve mechanistic understanding of this response, we analyzed proteomic data using the Olink immuno-oncology panel of 96 biomarkers from tissue and serum samples of this patient throughout his treatment course. Particular attention was paid to programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), and lymphocyte-activation gene 3 (LAG-3) given they are all targeted by ICIs in clinical practice. These proteins were upregulated during the period of DPCP monotherapy, then downregulated during pembrolizumab monotherapy, and then robustly upregulated again during dual therapy. Although not exclusively, the induction of checkpoint inhibitor proteins in the presence of DPCP suggests potential synergy between this agent and ICIs in the treatment of cutaneous melanoma metastases. Large-scale investigation is warranted to further evaluate this potential novel combination therapeutic approach

    Clustering of dormancy signature scores.

    No full text
    <p>A) Dormancy score analysis in breast cancer cell lines. The cell lines are ordered by dormancy scores (low to high from left to right). The rows correspond to genes and the columns represent cell lines. Expression levels for positive dormancy genes (upregulated genes - top section) and negative dormancy genes (downregulated genes - bottom section) were clustered by a hierarchical clustering algorithm. The colors represent log<sub>2</sub> fold change compared to the average from −2.5 (blue, below average) to +2.5 (red, above average) with white as the average value. A, B, and L stand for Basal A, Basal B, and Luminal classifications, respectively. B) Correlation of cell line dormancy scores with proliferation indices from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0035569#pone-0035569-t001" target="_blank">Table 1</a> of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0035569#pone.0035569-Kenny1" target="_blank">[9]</a> with ER- lines plotted as squares and ER+ lines plotted as diamonds. Straight line fits of ER- (blue, Spearman correlation coefficient r = .027) and ER+ (red, r = −0.76) cell lines are plotted. The ER status of HCC1500 is unclear (ATCC indicates it as ER+ while it is ER- by gene expression and Western blot in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0035569#pone.0035569-Neve1" target="_blank">[8]</a>) and it was not used in the analysis. MDA-MB-231 (large orange square), MCF7 (large green diamond) and T47D (large yellow diamond) are identified. C) Patient tumor analysis. The four clinical studies were clustered as in A. In the ER status bar, ER status is indicated by black (ER+), blue (ER−) or white (not determined) bars. The two genes for which probes were not present in the van de Vijver et al. data set are represented by gray bars. D) Comparison of clustering of cell lines and patient data. Top: Positive dormancy genes that are upregulated in high dormancy score cell lines or patients. Bottom: Negative dormancy genes that are up regulated in low dormancy score cell lines or patients.</p

    RNAi suppression of dormancy upregulated genes accelerates tumor take and growth of ER+ luminal MCF-7 cells.

    No full text
    <p>(A) Percent of tumor take at the indicated time points after injecting with 4 10<sup>6</sup> MCF7 cells treated with the indicated siRNAs in the mouse mammary fat pad. (B) Tumor volume (mm<sup>3</sup>) at 12 days for tumors generated by MCF7 cells treated with the indicated siRNAs and injected in the mouse mammary fat pad. (C–D) Q-PCR analysis for the expression of BHLHE41 (C) and NR2F1 (D) mRNAs after 48 hrs of treatment with control or specific siRNAs targeting these mRNAs.</p
    corecore