5,592 research outputs found
UV solar irradiance in observations and the NRLSSI and SATIRE-S models
Total solar irradiance and UV spectral solar irradiance have been monitored
since 1978 through a succession of space missions. This is accompanied by the
development of models aimed at replicating solar irradiance by relating the
variability to solar magnetic activity. The NRLSSI and SATIRE-S models provide
the most comprehensive reconstructions of total and spectral solar irradiance
over the period of satellite observation currently available. There is
persistent controversy between the various measurements and models in terms of
the wavelength dependence of the variation over the solar cycle, with
repercussions on our understanding of the influence of UV solar irradiance
variability on the stratosphere. We review the measurement and modelling of UV
solar irradiance variability over the period of satellite observation. The
SATIRE-S reconstruction is consistent with spectral solar irradiance
observations where they are reliable. It is also supported by an independent,
empirical reconstruction of UV spectral solar irradiance based on UARS/SUSIM
measurements from an earlier study. The weaker solar cycle variability produced
by NRLSSI between 300 and 400 nm is not evident in any available record. We
show that although the method employed to construct NRLSSI is principally
sound, reconstructed solar cycle variability is detrimentally affected by the
uncertainty in the SSI observations it draws upon in the derivation. Based on
our findings, we recommend, when choosing between the two models, the use of
SATIRE-S for climate studies
Cold heteromolecular dipolar collisions
We present the first experimental observation of cold collisions between two
different species of neutral polar molecules, each prepared in a single
internal quantum state. Combining for the first time the techniques of Stark
deceleration, magnetic trapping, and cryogenic buffer gas cooling allows the
enhancement of molecular interaction time by 10. This has enabled an
absolute measurement of the total trap loss cross sections between OH and
ND at a mean collision energy of 3.6 cm (5 K). Due to the dipolar
interaction, the total cross section increases upon application of an external
polarizing electric field. Cross sections computed from \emph{ab initio}
potential energy surfaces are in excellent agreement with the measured value at
zero external electric field. The theory presented here represents the first
such analysis of collisions between a radical and a closed-shell
polyatomic molecule.Comment: 7 pages, 5 figure
Liquid-to-liquid phase transition in pancake vortex systems
We study the thermodynamics of a model of pancake vortices in layered
superconductors. The model is based on the effective pair potential for the
pancake vortices derived from the London approximation of a version of the
Lawrence-Doniach model which is valid for extreme type-II superconductors.
Using the hypernetted-chain (HNC) approximation, we find that there is a
temperature below which multiple solutions to the HNC equations exist. By
explicitly evaluating the free energy for each solution we find that the system
undergoes a first-order transition between two vortex liquid phases. The
low-temperature phase has larger correlations along the field direction than
the high-temperature phase. We discuss the possible relation of this phase
transition to the liquid-to-liquid phase transition recently observed in
Y-Ba-Cu-O superconductors in high magnetic fields in the presence of disorder.Comment: 7 pages, 6 figure
Valence band photoemission from the GaN(0001) surface
A detailed investigation by one-step photoemission calculations of the
GaN(0001)-(1x1) surface in comparison with recent experiments is presented in
order to clarify its structural properties and electronic structure. The
discussion of normal and off-normal spectra reveals through the identified
surface states clear fingerprints for the applicability of a surface model
proposed by Smith et al. Especially the predicted metallic bonds are confirmed.
In the context of direct transitions the calculated spectra allow to determine
the valence band width and to argue in favor of one of two theoretical bulk
band structures. Furthermore a commonly used experimental method to fix the
valence band maximum is critically tested.Comment: 8 pages, 11 eps files, submitted to PR
Memory consolidation in the cerebellar cortex
Several forms of learning, including classical conditioning of the eyeblink, depend upon the cerebellum. In examining mechanisms of eyeblink conditioning in rabbits, reversible inactivations of the control circuitry have begun to dissociate aspects of cerebellar cortical and nuclear function in memory consolidation. It was previously shown that post-training cerebellar cortical, but not nuclear, inactivations with the GABA(A) agonist muscimol prevented consolidation but these findings left open the question as to how final memory storage was partitioned across cortical and nuclear levels. Memory consolidation might be essentially cortical and directly disturbed by actions of the muscimol, or it might be nuclear, and sensitive to the raised excitability of the nuclear neurons following the loss of cortical inhibition. To resolve this question, we simultaneously inactivated cerebellar cortical lobule HVI and the anterior interpositus nucleus of rabbits during the post-training period, so protecting the nuclei from disinhibitory effects of cortical inactivation. Consolidation was impaired by these simultaneous inactivations. Because direct application of muscimol to the nuclei alone has no impact upon consolidation, we can conclude that post-training, consolidation processes and memory storage for eyeblink conditioning have critical cerebellar cortical components. The findings are consistent with a recent model that suggests the distribution of learning-related plasticity across cortical and nuclear levels is task-dependent. There can be transfer to nuclear or brainstem levels for control of high-frequency responses but learning with lower frequency response components, such as in eyeblink conditioning, remains mainly dependent upon cortical memory storage
Analog IC test and product engineering curriculum for Malaysia microelectronics industry
Production test is a significant driver of semiconductor manufacturing cost. Parallel with the advances of semiconductor fabrication, the need for a pool of talented product and test engineers is significantly increasing. This paper describes the academia-industries collaboration effort in developing an analogue electronic test and product engineering to boost-up technical competencies of electronic engineering graduates particularly in microelectronic major. The program has been successfully conducted at Universiti Putra Malaysia with strong support from Texas Instruments and Teradyne
RNA-binding protein CPEB1 remodels host and viral RNA landscapes.
Host and virus interactions occurring at the post-transcriptional level are critical for infection but remain poorly understood. Here, we performed comprehensive transcriptome-wide analyses revealing that human cytomegalovirus (HCMV) infection results in widespread alternative splicing (AS), shortening of 3' untranslated regions (3' UTRs) and lengthening of poly(A)-tails in host gene transcripts. We found that the host RNA-binding protein CPEB1 was highly induced after infection, and ectopic expression of CPEB1 in noninfected cells recapitulated infection-related post-transcriptional changes. CPEB1 was also required for poly(A)-tail lengthening of viral RNAs important for productive infection. Strikingly, depletion of CPEB1 reversed infection-related cytopathology and post-transcriptional changes, and decreased productive HCMV titers. Host RNA processing was also altered in herpes simplex virus-2 (HSV-2)-infected cells, thereby indicating that this phenomenon might be a common occurrence during herpesvirus infections. We anticipate that our work may serve as a starting point for therapeutic targeting of host RNA-binding proteins in herpesvirus infections
- …