26 research outputs found

    Comparison of Rotor Structural Loads Calculated using Comprehensive Analysis

    Get PDF
    Blade flap and chord bending and torsion moments are investigated for six rotors operating at transition and high speed: H-34 in flight and wind tunnel, SA 330 (research Puma), SA 349/2, UH-60A full-scale, and BO- 105 model (HART-I). The measured data from flight and wind tunnel tests are compared with calculations obtained using the comprehensive analysis CAMRAD II. The calculations were made using two free wake models: rolled-up and multiple-trailer with consolidation models. At transition speed, there is fair to good agreement for the flap and chord bending moments between the test data and analysis for the H-34, research Puma, and SA 349/2. Torsion moment correlation, in general, is fair to good for all the rotors investigated. Better flap bending and torsion moment correlation is obtained for the UH-60A and BO-105 rotors by using the multiple-trailer with consolidation wake model. In the high speed condition, the analysis shows generally better correlation in magnitude than in phase for the flap bending and torsion moments. However, a significant underprediction of chord bending moment is observed for the research Puma and UH-60A. The poor chord bending moment correlation appears to be caused by the airloads model, not the structural dynamics

    Assessment of Comprehensive Analysis Calculation of Airloads on Helicopter Rotors

    Get PDF
    Blade section normal force and pitching moment were investigated for six rotors operating at transition and high speeds: H-34 in flight and wind tunnel, SA 330 (research Puma), SA 349/2, UH-60A full-scale and BO-105 model (HART-I). The measured data from flight and wind tunnel tests were compared with calculations obtained using the comprehensive analysis CAMRAD II. The calculations were made using two free wake models: rolled-up and multiple-trailer with consolidation models. At transition speed, there is fair to good agreement for the blade section normal force between the test data and analysis for the H-34, research Puma, and SA 349/2 with the rolled-up wake. The calculated airloads differ significantly from the measurements for the UH-60A and BO-105. Better correlation is obtained for the UH-60A and BO-105 by using the multiple-trailer with consolidation wake model. In the high speed condition, the analysis shows generally good agreement with the research Puma flight data in both magnitude and phase. However, poor agreement is obtained for the other rotors examined. The analysis shows that the aerodynamic tip design (chord length and quarter chord location) of the Puma has an important influence on the phase correlation

    Aeromechanics Analysis of a Compound Helicopter

    Get PDF
    A design and aeromechanics investigation was conducted for a 100,000-lb compound helicopter with a single main rotor, which is to cruise at 250 knots at 4000 ft/95 deg F condition. Performance, stability, and control analyses were conducted with the comprehensive rotorcraft analysis CAMRAD II. Wind tunnel test measurements of the performance of the H-34 and UH-1D rotors at high advance ratio were compared with calculations to assess the accuracy of the analysis for the design of a high speed helicopter. In general, good correlation was obtained with the increase of drag coefficients in the reverse flow region. An assessment of various design parameters (disk loading, blade loading, wing loading) on the performance of the compound helicopter was made. Performance optimization was conducted to find the optimum twist, collective, tip speed, and taper using the comprehensive analysis. Blade twist was an important parameter on the aircraft performance and most of the benefit of slowing the rotor occurred at the initial 20 to 30% reduction of rotor tip speed. No stability issues were observed with the current design and the control derivatives did not change much with speed, but did exhibit significant coupling

    Loads Correlation of a Full-Scale UH-60A Airloads Rotor in a Wind Tunnel

    Get PDF
    Wind tunnel measurements of the rotor trim, blade airloads, and structural loads of a full-scale UH-60A Black Hawk main rotor are compared with calculations obtained using the comprehensive rotorcraft analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. A speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed into deep stall are investigated. The coupled analysis shows significant improvement over comprehensive analysis. Normal force phase is better captured and pitching moment magnitudes are better predicted including the magnitude and phase of the two stall events in the fourth quadrant at the deeply stalled condition. Structural loads are, in general, improved with the coupled analysis, but the magnitude of chord bending moment is still significantly underpredicted. As there are three modes around 4 and 5/rev frequencies, the structural responses to the 5/rev airloads due to dynamic stall are magnified and thus care must be taken in the analysis of the deeply stalled condition

    Optimum Design of a Compound Helicopter

    Get PDF
    A design and aeromechanics investigation was conducted for a 100,000-lb compound helicopter with a single main rotor, which is to cruise at 250 knots at 4000 ft/95 deg F condition. Performance, stability, and control analyses were conducted with the comprehensive rotorcraft analysis CAMRAD II. Wind tunnel test measurements of the performance of the H-34 and UH-1D rotors at high advance ratio were compared with calculations to assess the accuracy of the analysis for the design of a high speed helicopter. In general, good correlation was obtained when an increase of drag coefficients in the reverse flow region was implemented. An assessment of various design parameters (disk loading, blade loading, wing loading) on the performance of the compound helicopter was conducted. Lower wing loading (larger wing area) and higher blade loading (smaller blade chord) increased aircraft lift-to-drag ratio. However, disk loading has a small influence on aircraft lift-to-drag ratio. A rotor parametric study showed that most of the benefit of slowing the rotor occurred at the initial 20 to 30% reduction of the advancing blade tip Mach number. No stability issues were observed with the current design. Control derivatives did not change significantly with speed, but the did exhibit significant coupling

    Experimental Investigation and Fundamental Understanding of a Slowed UH-60A Rotor at High Advance Ratios

    Get PDF
    This paper describes and analyzes the measurements from a full-scale, slowed RPM, UH-60A rotor tested at the National Full-Scale Aerodynamics Complex 40- by 80- ft wind tunnel up to an advance ratio of 1.0. A comprehensive set of measurements, that includes performance, blade loads, hub loads and pressures/airloads makes this data set unique. The measurements reveal new and rich aeromechanical phenomena that are special to this exotic regime. These include reverse chord dynamic stall, retreating side impulse in pitch-link load, large inboard-outboard elastic twist differential, supersonic flow at low subsonic advancing tip Mach numbers, diminishing rotor forces yet dramatic build up of blade loads, and dramatic blade loads yet benign levels of vibratory hub loads. The objective of this research is the fundamental understanding of these unique aeromechanical phenomena. The intent is to provide useful knowledge for the design of high speed, high efficiency, slowed RPM rotors of the future and a challenging database for advanced analyses validation

    Design and Performance of Lift-Offset Rotorcraft for Short-Haul Missions

    Get PDF
    The design and performance of compound helicopters utilizing lift-offset rotors are examined, in the context of short-haul, medium-size civil and military missions. The analysis tools used are the comprehensive analysis CAMRAD II and the sizing code NDARC. Following correlation of the comprehensive analysis with existing lift-offset aircraft flight test data, the rotor performance model for the sizing code was developed, and an initial estimate was made of the rotor size and key hover and cruise flight conditions. The rotor planform and twist were optimized for those conditions, and the sizing code rotor performance model updated. Two models for estimating the blade and hub weight of lift-offset rotors are discussed. The civil and military missions are described, along with the aircraft design assumptions. The aircraft are sized for 30 passengers or 6600 lb payload, with a range of 300 nm. Civil and military aircraft designs are described for each of the rotor weight models. Disk loading and blade loading were varied to optimize the designs, based on gross weight and fuel burn. The influence of technology is shown, in terms of rotor hub drag and rotor weight

    Performance of Advanced Heavy-Lift, High-Speed Rotorcraft Configurations

    Get PDF
    The aerodynamic performance of rotorcraft designed for heavy-lift and high-speed cruise is examined. Configurations considered include the tiltrotor, the compound helicopter, and the lift-offset rotor. Design conditions are hover and 250-350 knot cruise, at 5k/ISA+20oC (civil) or 4k/95oF (military); with cruise conditions at 4000 or 30,000 ft. The performance was calculated using the comprehensive analysis CAMRAD II, emphasizing rotor optimization and performance, including wing-rotor interference. Aircraft performance was calculated using estimates of the aircraft drag and auxiliary propulsion efficiency. The performance metric is total power, in terms of equivalent aircraft lift-to-drag ratio L/D = WV/P for cruise, and figure of merit for hover

    Design of a Slowed-Rotor Compound Helicopter for Future Joint Service Missions

    Get PDF
    A slowed-rotor compound helicopter has been synthesized using the NASA Design and Analysis of Rotorcraft (NDARC) conceptual design software. An overview of the design process and the capabilities of NDARC are presented. The benefits of trading rotor speed, wing-rotor lift share, and trim strategies are presented for an example set of sizing conditions and missions

    Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System

    Get PDF
    Wind tunnel measurements of performance, loads, and vibration of a full-scale UH-60A Black Hawk main rotor with an individual blade control (IBC) system are compared with calculations obtained using the comprehensive helicopter analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. Measured data show a 5.1% rotor power reduction (8.6% rotor lift to effective-drag ratio increase) using 2/rev IBC actuation with 2.0. amplitude at u = 0.4. At the optimum IBC phase for rotor performance, IBC actuator force (pitch link force) decreased, and neither flap nor chord bending moments changed significantly. CAMRAD II predicts the rotor power variations with IBC phase reasonably well at u = 0.35. However, the correlation degrades at u = 0.4. Coupled CAMRAD II/OVERFLOW 2 shows excellent correlation with the measured rotor power variations with IBC phase at both u = 0.35 and u = 0.4. Maximum reduction of IBC actuator force is better predicted with CAMRAD II, but general trends are better captured with the coupled analysis. The correlation of vibratory hub loads is generally poor by both methods, although the coupled analysis somewhat captures general trends
    corecore