7,693 research outputs found

    Non-magnetic left-handed material

    Full text link
    We develop a new approach to build a material with negative refraction index. In contrast to conventional designs which make use of a resonant behavior to achieve a non-zero magnetic response, our material is intrinsically non-magnetic and relies on an anisotropic dielectric constant to provide a left-handed response in waveguide geometry. We demonstrate that the proposed material can support surface (polariton) waves, and show the connection between polaritons and the enhancement of evanescent fields, also referred to as super-lensing

    A Simplified View of the Geochemical Diversity Surrounding Home Plate

    Get PDF
    The Home Plate feature (Fig. 1) within the Inner Basin of the Columbia Hills consists of layered rocks and has been interpreted as an accumulation of pyroclastic deposits [1]. Samples analyzed by the Alpha Particle X-ray Spectrometer within ~25 meters of the eastern margin of Home Plate exhibit a strikingly diverse range of geochemical compositions, including the highest levels of Mg, Si, K, Zn, and Ni measured at Gusev Crater. This wide range of chemical variability across the 40+ samples analyzed on and near Home Plate can be represented by contributions from only six primary components. This reconstruction is not reflected in the M ssbauer mineralogy suggesting that significant alteration of the contributing components has occurred

    The Incredible Diversity of Fe-bearing Phases at Gusev Crater, Mars, According to the Mars Exploration Rover Moessbauer Spectrometer

    Get PDF
    The Mars Exploration Rover (MER) Spirit landed on the plains of Gusev Crater on 4 January 2004. One primary scientific objective for the mission is to characterize the mineralogical and elemental composition of surface materials, searching for evidence of water and clues for assessing past and current climates and their suitability for life [1]. The role of the Moessbauer (MB) spectrometer on Spirit is to provide quantitative information about the distribution of Fe among its oxidation and coordination states, identification of Fe-bearing phases, and relative distribution of Fe among those phases. The speciation and distribution of Fe in Martian rock and soil constrains the primary rock types, redox conditions under which primary minerals crystallized, the extent of alteration and weathering, the type of alteration and weathering products, and the processes and environmental conditions for alteration and weathering. In this abstract, we discuss the incredible diversity of Fe-bearing phases detected by Spirit s MB instrument during its first 540 sols of exploration at Gusev crater [2,3]

    Fe-Bearing Phases Indentified by the Moessbauer Spectrometers on the Mars Exploration Rovers: An Overview

    Get PDF
    The twin Mars Exploration Rovers Spirit and Opportunity have explored the martian surface at Gusev Crater (GC) and Meridiani Planum (MP), respectively, for about two Earth years. The Moessbauer (MB) spectrometers on both rovers have analyzed an aggregate of approx.200 surface targets and have returned to Earth information on the oxidation state of iron, the mineralogical composition of Fe-bearing phases, and the distribution of Fe among oxidation states and phases at the two landing sites [1-7]. To date, 15 component subspectra (10 doublets and 5 sextets) have been identified and most have been assigned to mineralogical compositions. Two subspectra are assigned to phases (jarosite and goethite) that are marker minerals for aqueous processes because they contain hydroxide anion in their structures. In this paper, we give an overview of the Febearing phases identified and their distributions at Gusev crater and Meridiani Planum

    A Xenon Condenser with a Remote Liquid Storage Vessel

    Full text link
    We describe the design and operation of a system for xenon liquefaction in which the condenser is separated from the liquid storage vessel. The condenser is cooled by a pulse tube cryocooler, while the vessel is cooled only by the liquid xenon itself. This arrangement facilitates liquid particle detector research by allowing easy access to the upper and lower flanges of the vessel. We find that an external xenon gas pump is useful for increasing the rate at which cooling power is delivered to the vessel, and we present measurements of the power and efficiency of the apparatus.Comment: 22 pages, 7 figures Corrected typos in authors lis

    Strangeness counting in high energy collisions

    Get PDF
    The estimates of overall strange quark production in high energy e+e-, pp and ppbar collisions by using the statistical-thermal model of hadronisation are presented and compared with previous works. The parametrization of strangeness suppression within the model is discussed. Interesting regularities emerge in the strange/non-strange produced quark ratio which turns out to be fairly constant in elementary collisions while it is twice as large in SPS heavy ion collision.Comment: talk given at Strangeness in Quark Matter 98, submitted to J. Phys.

    Magnetite in Martian Meteorite Mil 03346 and Gusev Adirondack Class Basalt: Moessbauer Evidence for Variability in the Oxidation State of Adirondack Lavas

    Get PDF
    The Moessbauer spectrometers on the Mars Exploration Rovers Spirit (Gusev crater) and Opportunity (Meridiani Planum) have returned information on the oxidation state of iron, the mineralogical composition of Fe-bearing phases, and the distribution of Fe among oxidation states and phases [1,2,3]. To date, ~100 and ~85 surface targets have been analyzed by the Spirit and Opportunity spectrometers, respectively. Twelve component subspectra (8 doublets and 4 sextets) have been identified and most have been assigned to mineralogical compositions [4]. Two sextet subspectra result from the opaque and strongly magnetic mineral magnetite (Fe3O4 for the stoichiometric composition), one each for the crystallographic sites occupied by tetrahedrally-coordinated Fe3+ and by octahedrally-coordinated Fe3+ and Fe2+. At Gusev crater, the percentage of total Fe associated with magnetite for rocks ranges from 0 to ~ 35% (Fig. 1) [3]. The range for soils (~5 to ~12% of total Fe from Mt, with one exception) is narrower. The ubiquitous presence of Mt in soil firmly establishes the phase as the strongly magnetic component in martian soi

    Detection of Siderite (FeCO3) in Glen Torridon Samples by the Mars Science Laboratory Rover

    Get PDF
    Siderite (FeCO3) has been detected in Gale Crater for the first time by the Mars Science Laboratory (MSL) Curiosity and is seen in multiple samples in the Glen Torridon (GT) region. The identification of siderite is based on evolved gas analysis (EGA) data from the Sample Analysis at Mars (SAM) instrument and X-ray diffraction (XRD) data from the Chemistry and Mineralogy (CheMin) instrument. Curiosity descended off of the Vera Rubin ridge (VRR) into the Glen Torridon region on Sol 2300. Glen Torridon is of particular interest because a strong clay mineral signature had been detected by orbital instruments [1]. To date, four drilled samples have been collected at two different drill locations: Kilmarie and Aberlady from adjacent blocks at the base of the south side of VRR in the Jura member and Glen Etive 1 and 2 on the same block in the Knockfarril member

    Aqueous Alteration on Mars: Evidence from Landed Missions

    Get PDF
    Mineralogical and geochemical data returned by orbiters and landers over the past 15 years have substantially enhanced our understanding of the history of aqueous alteration on Mars. Here, we summarize aqueous processes that have been implied from data collected by landed missions. Mars is a basaltic planet. The geochemistry of most materials has not been extensively altered by open-system aqueous processes and have average Mars crustal compositions. There are few examples of open-system alteration, such as Gale craters Pahrump Hills mudstone. Types of aqueous alteration include (1) acid-sulfate and (2) hydrolytic (circum-neutral/alkaline pH) with varying water-to-rock ratios. Several hypotheses have been suggested for acid-sulfate alteration including (1) oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials; (3) acid fog weathering of basaltic materials; and (4) near-neutral pH subsurface solutions rich in Fe (sup 2 plus) that rapidly oxidized to Fe (sup 3 plus) producing excess acidity. Meridiani Planums sulfate-rich sedimentary deposit containing jarosite is the most famous acid-sulfate environment visited on Mars, although ferric sulfate-rich soils are common in Gusev craters Columbia Hills and jarosite was recently discovered in the Pahrump Hills. An example of aqueous alteration under circum-neutral pH conditions is the formation of Fe-saponite with magnetite in situ via aqueous alteration of olivine in Gale craters Sheepbed mudstone. Circum-neutral pH, hydrothermal conditions were likely required for the formation of Mg-Fe carbonate in the Columbia Hills. Diagenetic features (e.g., spherules, fracture filled veins) indicate multiple episodes of aqueous alteration/diagenesis in most sedimentary deposits. However, low water-to-rock ratios are prominent at most sites visited by landed missions (e.g., limited water for reaction to form crystalline phases possibly resulting in large amounts of short-range ordered materials and little physical separation of primary and secondary materials). Most of the aqueous alteration appears to have occurred early in the planets history; however, minor aqueous alteration may be occurring at the surface today (e.g., thin films of water forming carbonates akin to those discovered by Phoenix)
    corecore