14,234 research outputs found

    Classical Extended Conformal Algebras Associated with Constrained KP Hierarchy

    Full text link
    We examine the conformal property of the second Hamiltonian structure of constrained KP hierarchy derived by Oevel and Strampp. We find that it naturallygives a family of nonlocal extended conformal algebras. We give two examples of such algebras and find that they are similar to Bilal's V algebra. By taking a gauge transformation one can map the constrained KP hierarchy to Kuperschmidt's nonstandard Lax hierarchy. We consider the second Hamiltonian structure in this representation. We show that after mapping the Lax operator to a pure differential operator the second structure becomes the sum of the second and the third Gelfand-Dickey brackets defined by this differential operator. We show that this Hamiltonian structure defines the W-U(1)-Kac-Moody algebra by working out its conformally covariant form.Comment: NHCU-HEP-94-28, 19 pages (Plain TeX

    Flight Flutter Testing of Rotary Wing Aircraft Using a Control System Oscillation Technique

    Get PDF
    A flight flutter testing technique is described in which the rotor controls are oscillated by series actuators to excite the rotor and airframe modes of interest, which are then allowed to decay. The moving block technique is then used to determine the damped frequency and damping variation with rotor speed. The method proved useful for tracking the stability of relatively well damped modes. The results of recently completed flight tests of an experimental soft-in-plane rotor are used to illustrate the technique. Included is a discussion of the application of this technique to investigation of the propeller whirl flutter stability characteristics of the NASA/Army XV-15 VTOL tilt rotor research aircraft

    Gait Verification using Knee Acceleration Signals

    Get PDF
    A novel gait recognition method for biometric applications is proposed. The approach has the following distinct features. First, gait patterns are determined via knee acceleration signals, circumventing difficulties associated with conventional vision-based gait recognition methods. Second, an automatic procedure to extract gait features from acceleration signals is developed that employs a multiple-template classification method. Consequently, the proposed approach can adjust the sensitivity and specificity of the gait recognition system with great flexibility. Experimental results from 35 subjects demonstrate the potential of the approach for successful recognition. By setting sensitivity to be 0.95 and 0.90, the resulting specificity ranges from 1 to 0.783 and 1.00 to 0.945, respectively

    Phase diagram of doped BaFe2_2As2_2 superconductor under broken C4C_4 symmetry

    Full text link
    We develop a minimal multiorbital tight-binding model with realistic hopping parameters. The model breaks the symmetry of the tetragonal point group by lowering it from C4C_4 to D2dD_{2d}, which accurately describes the Fermi surface evolution of the electron-doped BaFe2x_{2-x}Cox_xAs2_2 and hole-doped Ba1y_{1-y}Ky_yFe2_2As2_2 compounds. An investigation of the phase diagram with a mean-field tt-UU-VV Bogoliubov-de Gennes Hamiltonian results in agreement with the experimentally observed electron- and hole-doped phase diagram with only one set of tt, UU and VV parameters. Additionally, the self-consistently calculated superconducting order parameter exhibits s±s^\pm-wave pairing symmetry with a small d-wave pairing admixture in the entire doping range, % The superconducting s±+ds^\pm + d-wave order parameter which is the subtle result of the weakly broken symmetry and competing interactions in the multiorbital mean-field Hamiltonian

    Long-term X-ray Variability of Ultraluminous X-ray Sources

    Get PDF
    Long-term X-ray modulations on timescales from tens to hundreds of days have been widely studied for X-ray binaries located in the Milky Way and the Magellanic Clouds. For other nearby galaxies, only the most luminous X-ray sources can be monitored with dedicated observations. We here present the first systematic study of long-term X-ray variability of four ultraluminous X-ray sources (ESO 243-49 HLX-1, Holmberg IX X-1, M81 X-6, and NGC 5408 X-1) monitored with Swift. By using various dynamic techniques to analyse their light curves, we find several interesting low-frequency quasi-periodicities. Although the periodic signals may not represent any stable orbital modulations, these detections reveal that such long-term regular patterns may be related to superorbital periods and structure of the accretion discs. In particular, we show that the outburst recurrence time of ESO 243-49 HLX-1 varies over time and suggest that it may not be the orbital period. Instead, it may be due to some kinds of precession, and the true binary period is expected to be much shorter.Comment: 15 pages, 8 figures; accepted for publication in MNRA

    Discovery of X-ray pulsations from "next Geminga" - PSR J1836+5925

    Get PDF
    We report the X-ray pulsation of ~173.3 ms for the "next Geminga", PSR J1836+5925, with recent XMM-Newton investigations. The X-ray periodicity is consistent wtih the gamma-ray ephemeris at the same epoch. The X-ray folded light curve has a sinusoidal structure which is different from the double-peaked gamma-ray pulse profile. We have also analysed the X-ray phase-averaged spectra which shows the X-ray emission from PSR J1836+5925 is thermal dominant. This suggests the X-ray pulsation mainly originates from the modulated hot spot on the stellar surface.Comment: 7 pages, 3 figures, 1 table, accepted for publication in ApJ Lette

    Morphological study of myelinated and unmyelinated fibres in the sacrococcygeal dorsal roots of the rat

    Get PDF
    Background: The number and calibre of myelinated and unmyelinated fibres of the sacrococcygeal dorsal roots innervating the tail of rats were studied by means of light and electron microscopy. Materials and methods: There were an estimated total of 12,500 myelinated and 25,500 unmyelinated dorsal root fibres innervating the tail of a rat.  Results: The results showed that from the second sacral (S2) to the fourth sacral (S4) segment, the fibre diameter spectrum of myelinated fibres within each dorsal root was bimodal with two peaks at 5 microns and 10 microns, respectively. The first sacral (S1) segment was composed of numerous smaller-size myelinated fibres, thus forming a right-skewed distribution. The coccygeal (Co) segments showed a unimodal distribution peaking at 10 microns for the first (Co1) segment and gradually shifting to 7 microns for the third (Co3) segment. Overall, there was a continuous relative increase of the larger vs. the smaller myelinated fibres from the sacral to coccygeal segments. The fibre diameter of unmyelinated fibres of all these roots was unimodal with a single peak at 0.5 microns. The ratio of unmy- elinated to myelinated fibre numbers was on average 2.83 for the S1–S2 roots, 1.66 for the S3–S4 roots, and 1.24 for the coccygeal roots.  Conclusions: The comparison of the left- and right-side nerve fibres show that there was no significant difference, thus implying a symmetrical sensory innervation of the rat’s tail.
    corecore