7 research outputs found

    Urokinase-type Plasminogen Activator (uPA) Promotes Angiogenesis by Attenuating Proline-rich Homeodomain Protein (PRH) Transcription Factor Activity and De-repressing Vascular Endothelial Growth Factor (VEGF) Receptor Expression

    Get PDF
    Urokinase-type plasminogen activator (uPA) regulates angiogenesis and vascular permeability through proteolytic degradation of extracellular matrix and intracellular signaling initiated upon its binding to uPAR/CD87 and other cell surface receptors. Here, we describe an additional mechanism by which uPA regulates angiogenesis. Ex vivo VEGF-induced vascular sprouting from Matrigel-embedded aortic rings isolated from uPA knock-out (uPA(−/−)) mice was impaired compared with vessels emanating from wild-type mice. Endothelial cells isolated from uPA(−/−) mice show less proliferation and migration in response to VEGF than their wild type counterparts or uPA(−/−) endothelial cells in which expression of wild type uPA had been restored. We reported previously that uPA is transported from cell surface receptors to nuclei through a mechanism that requires its kringle domain. Intranuclear uPA modulates gene transcription by binding to a subset of transcription factors. Here we report that wild type single-chain uPA, but not uPA variants incapable of nuclear transport, increases the expression of cell surface VEGF receptor 1 (VEGFR1) and VEGF receptor 2 (VEGFR2) by translocating to the nuclei of ECs. Intranuclear single-chain uPA binds directly to and interferes with the function of the transcription factor hematopoietically expressed homeodomain protein or proline-rich homeodomain protein (HHEX/PRH), which thereby lose their physiologic capacity to repress the activity of vehgr1 and vegfr2 gene promoters. These studies identify uPA-dependent de-repression of vegfr1 and vegfr2 gene transcription through binding to HHEX/PRH as a novel mechanism by which uPA mediates the pro-angiogenic effects of VEGF and identifies a potential new target for control of pathologic angiogenesis

    Impact of space and rocket activity on soil cover in central Kazakhstan

    No full text
    The results of environmental monitoring and integrated assessment of the stability of brown, mostly solonetzic soils and solonchaks to chemical pollution and mechanical stresses at the fall places of the first stage of “Proton” launch vehicle (LV) in the Yu-2 zone (Central Kazakhstan) are provided. With the help of GIS technologies, zoning maps of the investigated territory have been created based on the criteria of soil cover resistance to the impact of space and rocket activity (SRA)
    corecore