20,349 research outputs found

    Vortex pinning by cylindrical defects in type-II superconductors: Numerical solutions to the Ginzburg-Landau equations

    Get PDF
    We numerically integrate the one-dimensional, cylindrically symmetric Ginzburg-Landau equations to calculate the spatial variation of the order parameter and supercurrents for a vortex trapped by a cylindrical defect. We use the resulting field distributions to estimate the pinning energy, and make use of the vortex/two-dimensional boson analogy to calculate the depinning temperature. The microscopic behavior oi the fields depends on the size, and the conductivity of the cylindrical defect appears to be important for the pinning

    Observation of vortices and hidden pseudogap from scanning tunneling spectroscopic studies of electron-doped cuprate superconductor Sr0.9La0.1CuO2Sr_{0.9}La_{0.1}CuO_2

    Get PDF
    We present the first demonstration of vortices in an electron-type cuprate superconductor, the highest TcT_c (= 43 K) electron-type cuprate Sr0.9La0.1CuO2Sr_{0.9}La_{0.1}CuO_2. Our spatially resolved quasiparticle tunneling spectra reveal a hidden low-energy pseudogap inside the vortex core and unconventional spectral evolution with temperature and magnetic field. These results cannot be easily explained by the scenario of pure superconductivity in the ground state of high-TcT_c superconductivity.Comment: 6 pages, 4 figures. Two new graphs have been added into Figure 2. Accepted for publication in Europhysics Letters. Corresponding author: Nai-Chang Yeh (E-mail: [email protected]

    Using media to improve the informed consent process for youth undergoing pediatric endoscopy and their parents.

    Get PDF
    Background and study aims Youth undergoing pediatric endoscopic procedures and their parents demonstrate suboptimal comprehension of the informed consent (IC) process. We developed informational videos discussing key IC elements for pediatric endoscopy and evaluated their effects on youth and parental comprehension of the IC process. Patients and methods A randomized controlled trial of the video intervention was performed among youth undergoing endoscopy and their parents at an academic children's hospital. Randomization occurred at the time of enrollment using permutated blocks. Following the IC process with the proceduralist, subjects underwent structured interviews to assess IC comprehension. An Informed Consent Overall Score (ICOS: range 0 - 4) for comprehension was calculated. Results Seventy-seven pairs of children and their parents participated. Intervention recipients (N = 37 pairs) demonstrated higher ICOS scores as compared to control counterparts (mean (standard deviation): 3.6 (0.7) v. 2.9 (0.9), intervention v. control parents, P < 0.0001 and 2.7 (1.1) v. 1.7 (1.1), intervention v. control youth, P < 0.0001). Conclusions A media intervention addressing key elements of the IC process for pediatric endoscopy was effective in improving comprehension of IC for youth undergoing endoscopic procedures and their parents

    Interfacial strain in AlxGa1–xAs layers on GaAs

    Get PDF
    Detailed analysis of x-ray rocking curves was used to determine the depth profile of strain and composition in a 2500-Å-thick layer of AlxGa1–xAs grown by metalorganic chemical vapor deposition on 100 GaAs. The x value and layer thickness were in good agreement with the values expected from growth parameters. The presence of a transition region, 280 Å thick, was detected by the rocking curve. In this region, the Al concentration varies smoothly from 0 to 0.87. Measurement and control of the sharpness of such interfaces has important implications for heterojunction devices

    A parallel VLSI architecture for a digital filter of arbitrary length using Fermat number transforms

    Get PDF
    A parallel architecture for computation of the linear convolution of two sequences of arbitrary lengths using the Fermat number transform (FNT) is described. In particular a pipeline structure is designed to compute a 128-point FNT. In this FNT, only additions and bit rotations are required. A standard barrel shifter circuit is modified so that it performs the required bit rotation operation. The overlap-save method is generalized for the FNT to compute a linear convolution of arbitrary length. A parallel architecture is developed to realize this type of overlap-save method using one FNT and several inverse FNTs of 128 points. The generalized overlap save method alleviates the usual dynamic range limitation in FNTs of long transform lengths. Its architecture is regular, simple, and expandable, and therefore naturally suitable for VLSI implementation

    Measurement of ortho-Positronium Properties in Liquid Scintillators

    Get PDF
    Pulse shape discrimination in liquid scintillator detectors is a well-established technique for the discrimination of heavy particles from light particles. Nonetheless, it is not efficient in the separation of electrons and positrons, as they give rise to indistinguishable scintillator responses. This inefficiency can be overtaken through the exploitation of the formation of ortho-Positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants currently used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties are suitable for enhancing the electron-positron discrimination.Comment: 4 pages, 1 figure. Contribution to proceedings of the Low Radioactivity Techniques 2013 Workshop at LNGS, Assergi (AQ), Italy, April 10-12 201

    Quasiparticle spectroscopy and high-field phase diagrams of cuprate superconductors -- An investigation of competing orders and quantum criticality

    Get PDF
    We present scanning tunneling spectroscopic and high-field thermodynamic studies of hole- and electron-doped (p- and n-type) cuprate superconductors. Our experimental results are consistent with the notion that the ground state of cuprates is in proximity to a quantum critical point (QCP) that separates a pure superconducting (SC) phase from a phase comprised of coexisting SC and a competing order, and the competing order is likely a spin-density wave (SDW). The effect of applied magnetic field, tunneling current, and disorder on the revelation of competing orders and on the low-energy excitations of the cuprates is discussed.Comment: 10 pages, 5 figures. Accepted for publication in the International Journal of Modern Physics B. (Correspondence author: Nai-Chang Yeh, e-mail: [email protected]
    • …
    corecore