6,651 research outputs found

    Deuteron photodisintegration with polarized photons at astrophysical energies

    Get PDF
    Following precise experimental studies at the Duke Free-Electron Laser Laboratory, we discuss photodisintegration of deuterons with 100% linearly polarized photons using a model independent theoretical approach taking together M1M1 and E1E1 amplitudes simultaneously. The isoscalar M1sM1_s contribution is also taken exactly into account. From the existing experimental measurement on doubly polarized thermal neutron capture, it is seen that the isoscalar M1sM1_s contribution could be of the same order of magnitude as the experimentally measured cross sections at energies relevant to Big Bang Nucleosynthesis (BBN). Therefore appropriate measurements on deuteron photodisintegration are suggested to empirically determine the M1sM1_s contribution at astrophysical energies.Comment: 5 Pages, Latex-2

    A high order compact scheme for hypersonic aerothermodynamics

    Get PDF
    A novel high order compact scheme for solving the compressible Navier-Stokes equations has been developed. The scheme is an extension of a method originally proposed for solving the Euler equations, and combines several techniques for the solution of compressible flowfields, such as upwinding, limiting and flux vector splitting, with the excellent properties of high order compact schemes. Extending the method to the Navier-Stokes equations is achieved via a Kinetic Flux Vector Splitting technique, which represents an unusual and attractive way to include viscous effects. This approach offers a more accurate and less computationally expensive technique than discretizations based on more conventional operator splitting. The Euler solver has been validated against several inviscid test cases, and results for several viscous test cases are also presented. The results confirm that the method is stable, accurate and has excellent shock-capturing capabilities for both viscous and inviscid flows

    Chemical aging of m-xylene secondary organic aerosol: laboratory chamber study

    Get PDF
    Secondary organic aerosol (SOA) can reside in the atmosphere for a week or more. While its initial formation from the gas-phase oxidation of volatile organic compounds tends to take place in the first few hours after emission, SOA can continue to evolve chemically over its atmospheric lifetime. Simulating this chemical aging over an extended time in the laboratory has proven to be challenging. We present here a procedure for studying SOA aging in laboratory chambers that is applied to achieve 36 h of oxidation. The formation and evolution of SOA from the photooxidation of m-xylene under low-NO_x conditions and in the presence of either neutral or acidic seed particles is studied. In SOA aging, increasing molecular functionalization leads to less volatile products and an increase in SOA mass, whereas gas- or particle-phase fragmentation chemistry results in more volatile products and a loss of SOA. The challenge is to discern from measured chamber variables the extent to which these processes are important for a given SOA system. In the experiments conducted, m-xylene SOA mass, calculated under the assumption of size-invariant particle composition, increased over the initial 12–13 h of photooxidation and decreased beyond that time, suggesting the existence of fragmentation chemistry. The oxidation of the SOA, as manifested in the O:C elemental ratio and fraction of organic ion detected at m/z 44 measured by the Aerodyne aerosol mass spectrometer, increased continuously starting after 5 h of irradiation until the 36 h termination. This behavior is consistent with an initial period in which, as the mass of SOA increases, products of higher volatility partition to the aerosol phase, followed by an aging period in which gas- and particle-phase reaction products become increasingly more oxidized. When irradiation is stopped 12.4 h into one experiment, and OH generation ceases, minimal loss of SOA is observed, indicating that the loss of SOA is either light- or OH-induced. Chemical ionization mass spectrometry measurements of low-volatility m-xylene oxidation products exhibit behavior indicative of continuous photooxidation chemistry. A condensed chemical mechanism of m-xylene oxidation under low-NO_x conditions is capable of reproducing the general behavior of gas-phase evolution observed here. Moreover, order of magnitude analysis of the mechanism suggests that gas-phase OH reaction of low volatility SOA precursors is the dominant pathway of aging in the m-xylene system although OH reaction with particle surfaces cannot be ruled out. Finally, the effect of size-dependent particle composition and size-dependent particle wall loss rates on different particle wall loss correction methods is discussed

    Transformation of stimulus correlations by the retina

    Get PDF
    Redundancies and correlations in the responses of sensory neurons seem to waste neural resources but can carry cues about structured stimuli and may help the brain to correct for response errors. To assess how the retina negotiates this tradeoff, we measured simultaneous responses from populations of ganglion cells presented with natural and artificial stimuli that varied greatly in correlation structure. We found that pairwise correlations in the retinal output remained similar across stimuli with widely different spatio-temporal correlations including white noise and natural movies. Meanwhile, purely spatial correlations tended to increase correlations in the retinal response. Responding to more correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the similarity of pairwise correlations across stimuli where receptive field measurements were possible.Comment: author list corrected in metadat

    MOA-2011-BLG-293Lb: First Microlensing Planet possibly in the Habitable Zone

    Full text link
    We used Keck adaptive optics observations to identify the first planet discovered by microlensing to lie in or near the habitable zone, i.e., at projected separation r=1.1±0.1r_\perp=1.1\pm 0.1\,AU from its ML=0.86±0.06MM_{L}=0.86\pm 0.06\,M_\odot host, being the highest microlensing mass definitely identified. The planet has a mass mp=4.8±0.3MJupm_p = 4.8\pm 0.3\,M_{\rm Jup}, and could in principle have habitable moons. This is also the first planet to be identified as being in the Galactic bulge with good confidence: DL=7.72±0.44D_L=7.72\pm 0.44 kpc. The planet/host masses and distance were previously not known, but only estimated using Bayesian priors based on a Galactic model (Yee et al. 2012). These estimates had suggested that the planet might be a super-Jupiter orbiting an M dwarf, a very rare class of planets. We obtained high-resolution JHKJHK images using Keck adaptive optics to detect the lens and so test this hypothesis. We clearly detect light from a G dwarf at the position of the event, and exclude all interpretations other than that this is the lens with high confidence (95%), using a new astrometric technique. The calibrated magnitude of the planet host star is HL=19.16±0.13H_{L}=19.16\pm 0.13. We infer the following probabilities for the three possible orbital configurations of the gas giant planet: 53% to be in the habitable zone, 35% to be near the habitable zone, and 12% to be beyond the snow line, depending on the atmospherical conditions and the uncertainties on the semimajor axis.Comment: Accepted by ApJ, 21 pages, 4 figure

    α-pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NO_x environments

    Get PDF
    The gas-phase oxidation of α-pinene produces a large amount of secondary organic aerosol (SOA) in the atmosphere. A number of carboxylic acids, organosulfates and nitrooxy organosulfates associated with α-pinene have been found in field samples and some are used as tracers of α-pinene oxidation. α-pinene reacts readily with OH and O_3 in the atmosphere followed by reactions with both HO_2 and NO. Due to the large number of potential reaction pathways, it can be difficult to determine what conditions lead to SOA. To better understand the SOA yield and chemical composition from low- and high-NO_x OH oxidation of α-pinene, studies were conducted in the Caltech atmospheric chamber under controlled chemical conditions. Experiments used low O_3 concentrations to ensure that OH was the main oxidant and low α-pinene concentrations such that the peroxy radical (RO_2) reacted primarily with either HO_2 under low-NO_x conditions or NO under high-NO_x conditions. SOA yield was suppressed under conditions of high-NO_x. SOA yield under high-NO_x conditions was greater when ammonium sulfate/sulfuric acid seed particles (highly acidic) were present prior to the onset of growth than when ammonium sulfate seed particles (mildly acidic) were present; this dependence was not observed under low-NO_x conditions. When aerosol seed particles were introduced after OH oxidation, allowing for later generation species to be exposed to fresh inorganic seed particles, a number of low-NO_x products partitioned to the highly acidic aerosol. This indicates that the effect of seed acidity and SOA yield might be under-estimated in traditional experiments where aerosol seed particles are introduced prior to oxidation. We also identify the presence of a number of carboxylic acids that are used as tracer compounds of α-pinene oxidation in the field as well as the formation of organosulfates and nitrooxy organosulfates. A number of the carboxylic acids were observed under all conditions, however, pinic and pinonic acid were only observed under low-NO_x conditions. Evidence is provided for particle-phase sulfate esterification of multi-functional alcohols

    Pseudotumor cerebri syndrome in childhood : incidence, clinical profile and risk factors in a national prospective population-based cohort study

    Get PDF
    Aim To investigate the epidemiology, clinical profile and risk factors of pseudotumor cerebri syndrome (PTCS) in children aged 1-16 years. Methods A national prospective population-based cohort study over 25 months. Newly diagnosed PTCS cases notified via British Paediatric Surveillance Unit (BPSU) were ascertained using classical diagnostic criteria and categorised according to 2013 revised diagnostic criteria. We derived national age, sex and weight-specific annual incidence rates and assessed effects of sex and weight category. Results We identified 185 PTCS cases of which 166 also fulfilled revised diagnostic criteria. The national annual incidence (95% CI) of childhood PTCS aged 1-16 years was 0.71 (0.57- 0.87) per 100,000 population increasing with age and weight to 4.18 and 10.7 per 100,000 in obese 12-15 year old boys and girls respectively. Incidence rates under 7 years were similar in both sexes. From 7 years onwards, the incidence in girls was double that in boys, but only in overweight (including obese) children. In 12-15 year old children, an estimated 82% of the incidence of PTCS was attributable to obesity. Two subgroups of PTCS were apparent: 168 (91%) cases aged from 7 years frequently presented on medication and with headache, and were predominantly female and obese. The remaining 17 (9%) cases under 7 years often lacked these risk factors and commonly presented with new onset squint. Conclusions This uniquely largest population-based study of childhood PTCS will inform the design of future intervention studies. It suggests that weight reduction is central to the prevention of PTCS

    Antinuclear antibodies (ANA) in chronic hepatitis C virus infection: correlates of positivity and clinical relevance.

    No full text
    We examined correlates of antinuclear antibody (ANA) positivity (ANA+) in individuals with chronic hepatitis C virus (HCV) infection and the effect of positivity on clinical outcome of HCV. Pretreatment sera from 645 patients from three centres in Sweden (n = 225), the UK (n = 207) and Italy (n = 213) were evaluated by indirect immunofluorescence on Hep-2 cells for ANA pattern and titre by a single laboratory. Liver biopsies were all scored by one pathologist. A total of 258 patients were subsequently treated with interferon monotherapy. There was a significant difference in the prevalence of ANA (1:40) by geographic location: Lund 4.4%, London 8.7%, Padova 10.3% [odds ratio (OR) = 0.66; 95% CI: 0.46-0.94; P = 0.023]. Duration of HCV infection, age at infection, current age, route of infection, viral genotype, alcohol consumption, fibrosis stage and inflammatory score were not correlated with ANA+ or ANA pattern. Female gender was correlated with ANA+ and this association persisted in multivariable analyses (OR = 3.0; P = 0.002). Increased plasma cells were observed in the liver biopsies of ANA-positive individuals compared with ANA-negative individuals, while a trend towards decreased lymphoid aggregates was observed [hazard ratio (HR) = 9.0, P = 0.037; HR = 0.291, P = 0.118, respectively]. No correlations were observed between ANA positivity and nonresponse to therapy (OR = 1.4; P = 0.513), although ANA+ was correlated with faster rates of liver fibrosis, this was not statistically significant (OR = 1.8; P = 0.1452). Low titre ANA+ should not be a contraindication for interferon treatment. Our observation of increased plasma cells in ANA+ biopsies might suggest B-cell polyclonal activity with a secondary clinical manifestation of increased serum immunoglobulins
    corecore