6,339 research outputs found

    Design, fabrication, and initial test of a fixture for reducing the natural frequency of the Mod-O wind turbine tower

    Get PDF
    It was desired to observe the behavior of a two bladed wind turbine where the tower first bending natural frequency is less than twice the rotor speed. The system then passes through resonance when accelerating to operating speed. The frequency of the original Mod-O tower was reduced by placing it on a spring fixture. The fixture is adjustable to provide a range of tower bending frequencies. Fixture design details are given and behavior during initial operation is described

    Chemical aging of m-xylene secondary organic aerosol: laboratory chamber study

    Get PDF
    Secondary organic aerosol (SOA) can reside in the atmosphere for a week or more. While its initial formation from the gas-phase oxidation of volatile organic compounds tends to take place in the first few hours after emission, SOA can continue to evolve chemically over its atmospheric lifetime. Simulating this chemical aging over an extended time in the laboratory has proven to be challenging. We present here a procedure for studying SOA aging in laboratory chambers that is applied to achieve 36 h of oxidation. The formation and evolution of SOA from the photooxidation of m-xylene under low-NO_x conditions and in the presence of either neutral or acidic seed particles is studied. In SOA aging, increasing molecular functionalization leads to less volatile products and an increase in SOA mass, whereas gas- or particle-phase fragmentation chemistry results in more volatile products and a loss of SOA. The challenge is to discern from measured chamber variables the extent to which these processes are important for a given SOA system. In the experiments conducted, m-xylene SOA mass, calculated under the assumption of size-invariant particle composition, increased over the initial 12–13 h of photooxidation and decreased beyond that time, suggesting the existence of fragmentation chemistry. The oxidation of the SOA, as manifested in the O:C elemental ratio and fraction of organic ion detected at m/z 44 measured by the Aerodyne aerosol mass spectrometer, increased continuously starting after 5 h of irradiation until the 36 h termination. This behavior is consistent with an initial period in which, as the mass of SOA increases, products of higher volatility partition to the aerosol phase, followed by an aging period in which gas- and particle-phase reaction products become increasingly more oxidized. When irradiation is stopped 12.4 h into one experiment, and OH generation ceases, minimal loss of SOA is observed, indicating that the loss of SOA is either light- or OH-induced. Chemical ionization mass spectrometry measurements of low-volatility m-xylene oxidation products exhibit behavior indicative of continuous photooxidation chemistry. A condensed chemical mechanism of m-xylene oxidation under low-NO_x conditions is capable of reproducing the general behavior of gas-phase evolution observed here. Moreover, order of magnitude analysis of the mechanism suggests that gas-phase OH reaction of low volatility SOA precursors is the dominant pathway of aging in the m-xylene system although OH reaction with particle surfaces cannot be ruled out. Finally, the effect of size-dependent particle composition and size-dependent particle wall loss rates on different particle wall loss correction methods is discussed

    APM 08279+5255: an ultraluminous BAL quasar at a redshift z=3.87

    Full text link
    We report on the discovery of a highly luminous, broad absorption line quasar at a redshift of z=3.87z=3.87 which is positionally coincident, within one arcsecond, with the IRAS FSC source F08279+5255. A chance alignment of the quasar and the IRAS source is extremely unlikely and we argue that the optical and FIR flux are different manifestations of the same object. With an R-band magnitude of 15.2, and an IRAS 60\mum flux of 0.51\jy, APM 08279+5255 is (apparently) easily the most intrinsically luminous object known, with L_{Bol}\sim5\times10^{15}L_{\odot}}. Imaging suggests that gravitational lensing may play a role in amplifying the intrinsic properties of the system. The optical spectrum of the quasar clearly reveals the presence of three potential lensing galaxies, \mg absorption systems at z=1.18z=1.18 and z=1.81z=1.81, and a \ly absorption system at z=3.07z=3.07. We estimate the total amplification of the optical component to be ≈40\approx40, but, due to the larger scale of the emitting region, would expect the infrared amplification to be significantly less. Even making the conservative assumption that all wavelengths are amplified by a factor 40, APM 08279+5255 still possesses a phenomenal luminosity of \simgt 10^{14L_{\odot}}, indicating that it belongs to a small, but significant population of high--redshift, hyperluminous objects with copious infrared emission.Comment: 15 Pages with Four figures. Accepted for publication in the Astrophysical Journa

    First Space-based Microlens Parallax Measurement of an Isolated Star: Spitzer Observations of OGLE-2014-BLG-0939

    Get PDF
    We present the first space-based microlens parallax measurement of an isolated star. From the striking differences in the lightcurve as seen from Earth and from Spitzer (~1 AU to the West), we infer a projected velocity v_helio,projected ~ 250 km/s, which strongly favors a lens in the Galactic Disk with mass M=0.23 +- 0.07 M_sun and distance D_L=3.1 +- 0.4 kpc. An ensemble of such measurements drawn from our ongoing program could be used to measure the single-lens mass function including dark objects, and also is necessary for measuring the Galactic distribution of planets since the ensemble reflects the underlying Galactic distribution of microlenses. We study the application of the many ideas to break the four-fold degeneracy first predicted by Refsdal 50 years ago. We find that this degeneracy is clearly broken, but by two unanticipated mechanisms.Comment: 26 pages, 3 figures, submitted to Ap

    Polarization dependence of coherent phonon generation and detection in highly-aligned single-walled carbon nanotubes

    Full text link
    We have investigated the polarization dependence of the generation and detection of radial breathing mode (RBM) coherent phonons (CP) in highly-aligned single-walled carbon nanotubes. Using polarization-dependent pump-probe differential-transmission spectroscopy, we measured RBM CPs as a function of angle for two different geometries. In Type I geometry, the pump and probe polarizations were fixed, and the sample orientation was rotated, whereas, in Type II geometry, the probe polarization and sample orientation were fixed, and the pump polarization was rotated. In both geometries, we observed a very nearly complete quenching of the RBM CPs when the pump polarization was perpendicular to the nanotubes. For both Type I and II geometries, we have developed a microscopic theoretical model to simulate CP generation and detection as a function of polarization angle and found that the CP signal decreases as the angle goes from 0 degrees (parallel to the tube) to 90 degrees (perpendicular to the tube). We compare theory with experiment in detail for RBM CPs created by pumping at the E44 optical transition in an ensemble of single-walled carbon nanotubes with a diameter distribution centered around 3 nm, taking into account realistic band structure and imperfect nanotube alignment in the sample

    The Luminosity Function of Field Galaxies in the CNOC1 Redshift Survey

    Get PDF
    We have computed the luminosity function for 389 field galaxies from the Canadian Network for Observational Cosmology cluster redshift survey (CNOC1), over redshifts z = 0.2-0.6. We find Schechter parameters M^* - 5 log h = -19.6 \pm 0.3 and \alpha = -0.9 \pm 0.2 in rest-frame B_{AB}. We have also split our sample at the color of a redshifted but nonevolving Sbc galaxy, and find distinctly different luminosity functions for red and blue galaxies. Red galaxies have a shallow slope \alpha \approx -0.4 and dominate the bright end of the luminosity function, while blue galaxies have a steep \alpha \approx -1.4 and prevail at the faint end. Comparisons of the CNOC1 results to those from the Canada-France (CFRS) and Autofib redshift surveys show broad agreement among these independent samples, but there are also significant differences which will require larger samples to resolve. Also, in CNOC1 the red galaxy luminosity density stays about the same over the range z = 0.2-0.6, while the blue galaxy luminosity density increases steadily with redshift. These results are consistent with the trend of the luminosity density vs. redshift relations seen in the CFRS, though the normalizations of the luminosity densities appear to differ for blue galaxies. Comparison to the local luminosity function from the Las Campanas redshift survey (LCRS) shows that the luminosity density at z \approx 0.1 is only about half that seen at z \approx 0.4. A change in the luminosity function shape, particularly at the faint end, appears to be required to match the CNOC1 and LCRS luminosity functions, if galaxy evolution is the sole cause of the differences seen. However, it should be noted that the specific details of the construction of different surveys may complicate the comparison of results and so may need to be considered carefully.Comment: 22 pages, including 6 postscript figures, uses AASTEX v4.0 style files. Corrected minor typos and updated references. Results and conclusions unchanged. Final version to appear in the Astrophysical Journa

    Resonant Coherent Phonon Spectroscopy of Single-Walled Carbon Nanotubes

    Get PDF
    Using femtosecond pump-probe spectroscopy with pulse shaping techniques, one can generate and detect coherent phonons in chirality-specific semiconducting single-walled carbon nanotubes. The signals are resonantly enhanced when the pump photon energy coincides with an interband exciton resonance, and analysis of such data provides a wealth of information on the chirality-dependence of light absorption, phonon generation, and phonon-induced band structure modulations. To explain our experimental results, we have developed a microscopic theory for the generation and detection of coherent phonons in single-walled carbon nanotubes using a tight-binding model for the electronic states and a valence force field model for the phonons. We find that the coherent phonon amplitudes satisfy a driven oscillator equation with the driving term depending on photoexcited carrier density. We compared our theoretical results with experimental results on mod 2 nanotubes and found that our model provides satisfactory overall trends in the relative strengths of the coherent phonon signal both within and between different mod 2 families. We also find that the coherent phonon intensities are considerably weaker in mod 1 nanotubes in comparison with mod~2 nanotubes, which is also in excellent agreement with experiment.Comment: 21 pages, 22 figure

    Spitzer as Microlens Parallax Satellite: Mass Measurement for the OGLE-2014-BLG-0124L Planet and its Host Star

    Get PDF
    We combine Spitzer and ground-based observations to measure the microlens parallax vector πE{\mathbf \pi}_{\rm E}, and so the mass and distance of OGLE-2014-BLG-0124L, making it the first microlensing planetary system with a space-based parallax measurement. The planet and star have masses m∌0.5 Mjupm \sim 0.5\,M_{\rm jup} and M∌0.7 M⊙M\sim 0.7\,M_\odot and are separated by a⊄∌3.1a_\perp\sim 3.1 AU in projection. The main source of uncertainty in all these numbers (approximately 30%, 30%, and 20%) is the relatively poor measurement of the Einstein radius ΞE\theta_{\rm E}, rather than uncertainty in πE\pi_{\rm E}, which is measured with 2.5% precision. This compares to 22% based on OGLE data alone, implying that the Spitzer data provide not only a substantial improvement in the precision of the πE\pi_{\rm E} measurement but also the first independent test of a ground-based πE{\mathbf \pi}_{\rm E} measurement.Comment: submitted to ApJ, 30 pages, 6 figures, 4 table

    Vortex solutions of a Maxwell-Chern-Simons field coupled to four-fermion theory

    Full text link
    We find the static vortex solutions of the model of Maxwell-Chern-Simons gauge field coupled to a (2+1)-dimensional four-fermion theory. Especially, we introduce two matter currents coupled to the gauge field minimally: the electromagnetic current and a topological current associated with the electromagnetic current. Unlike other Chern-Simons solitons the N-soliton solution of this theory has binding energy and the stability of the solutions is maintained by the charge conservation laws.Comment: 7 pages, harvmac, To be published in Phys. Rev. D5

    “It’s like my life but more, and better!” - Playing with the Cathaby Shark Girls: MMORPGs, young people and fantasy-based social play

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2011 A B Academic Publishers.Digital technology has opened up a range of new on-line leisure spaces for young people. Despite their popularity, on-line games and Massive Multiplayer Online Role Playing Games in particular are still a comparatively under-researched area in the fields of both Education and more broadly Youth Studies. Drawing on a Five year ethnographic study, this paper considers the ways that young people use the virtual spaces offered by MMORPGs. This paper suggests that MMORPGs represent significant arenas within which young people act out a range of social narratives through gaming. It argues that MMORPG have become important fantasy spaces which offer young people possibilities to engage in what were formally material practices. Although this form of play is grounded in the everyday it also extends material practices and offers new and unique forms of symbolic experimentation, thus I argue that game-play narratives cannot be divorced from the everyday lives of their participants
    • 

    corecore