
ar
X

iv
:1

41
0.

54
29

v3
  [

as
tr

o-
ph

.S
R

] 
 2

3 
N

ov
 2

01
4

First Space-based Microlens Parallax Measurement of an Isolated

Star: Spitzer Observations of OGLE-2014-BLG-0939

J. C. Yee1, A. Udalski2, S. Calchi Novati3,4,5, A. Gould6, S. Carey7, R. Poleski2,6,

B.S. Gaudi6, R.W. Pogge6 J. Skowron2, S. Koz lowski2, P. Mróz2, P. Pietrukowicz2, G.
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ABSTRACT

We present the first space-based microlens parallax measurement of an iso-

lated star. From the striking differences in the lightcurve as seen from Earth and

from Spitzer (∼ 1 AU to the West), we infer a projected velocity ṽhel ∼ 250 km s−1,

which strongly favors a lens in the Galactic Disk with mass M = 0.23± 0.07M⊙

and distance DL = 3.1±0.4 kpc. An ensemble of such measurements drawn from

our ongoing program could be used to measure the single-lens mass function

including dark objects, and also is necessary for measuring the Galactic distribu-

tion of planets since the ensemble reflects the underlying Galactic distribution of

microlenses. We study the application of the many ideas to break the four-fold

degeneracy first predicted by Refsdal 50 years ago. We find that this degeneracy

is clearly broken, but by two unanticipated mechanisms.

Subject headings: gravitational lensing: micro
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1. Introduction

When modern microlensing experiments were proposed toward the Large Magellanic

Cloud (Paczyński 1986) and the Galactic Bulge (Paczyński 1991; Griest et al. 1991), it was

believed that the only information that could be extracted about the lens mass M , distance

DL, and transverse motion µgeo would come through their combination in a single measured

parameter, the Einstein timescale,

tE =
θE
µgeo

; θ2E ≡ κMπrel; κ ≡ 4G

c2AU
≃ 8.14

mas

M⊙

. (1)

Here θE is the angular Einstein radius, πrel = AU(D−1
L − D−1

S ) is the lens-source relative

parallax, and µgeo is the lens-source relative proper motion in the Earth frame at the peak of

the event. This would imply, in particular, that individual masses could be estimated only

to within an order of magnitude (e.g., Figure 1 of Gould 2000a).

It was quickly realized, however, that if two additional potentially observable quantities

could be measured, θE and the “microlens parallax vector” πE, then these three quantities

could be disentangled (Gould 1992),

M =
θE
κπE

; πrel = πEθE; µgeo =
θE
tE

πE,geo

πE

. (2)

In modern notation, the microlens parallax vector is given by (Gould 2000b),

πE ≡ πrel

θE

µ

µ
. (3)

Its amplitude quantifies the lens-source relative displacement in the Einstein ring due to

motion of the observer, while its direction specifies the orientation of this displacement as

the event evolves. Hence, πE is in principle measurable from photometric deviations of the

event relative to what is expected from rectilinear motion. See Figure 1 of Gould & Horne

(2013) for a didactic explanation.

While both θE and πE are important, measurements of πE are more pressing for the

following three reasons. First, θE is very frequently measured “automatically” in planetary

and binary events. Hence, πE is the crucial missing link to obtain individual masses for these

high priority events, i.e., those for which individual masses are the most important. Second,

θE is very rarely measurable in single-lens events, which means that measuring πE is the best

way to obtain strong statistical constraints on masses of the much larger population of (dark

and luminous) single lenses. Third, while πE and θE appear symmetrically in Equation (2),

πE is actually much richer in information than θE. This is because the great majority of
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lenses observed toward the Galactic Bulge have similar proper motions within a factor ∼ 2

of µ ∼ 4 mas yr−1. Thus, in the limit that all microlens proper motions had exactly this

value, a measurement of θE = µtE would contain no additional information, while πE would

completely determine the mass M = µtE/κπE. Although this limit does not strictly apply,

an ensemble of πE measurements would constrain the mass function very well (Han & Gould

1995).

There are two broad classes of methods by which parallax might be measured. The

first is to make a single time series from an accelerated platform, either Earth (Gould 1992;

Alcock et al. 1995; Poindexter et al. 2005), or a satellite in low-Earth (Honma 1999) or

geosynchronous (Gould 2013) orbit. The second is to make simultaneous observations from

two (or more) observatories, either on two platforms in solar orbit (Refsdal 1966), or located

at several places on Earth (Hardy & Walker 1995; Holz & Wald 1996; Gould 1997). However,

with one exception, all of these methods are either subject to extremely heavy selection

bias or are impractical for the present and near future. In particular, out of more than

10,000 microlensing events discovered to date, fewer than 100 have πE measurements derived

from Earth’s orbital motion, and these are overwhelmingly events due to nearby lenses

and with abnormally long timescales (e.g., Table 1 of Gould et al. 2010). Only two events

have terrestrial parallax measurements (Gould et al. 2009; Yee et al. 2009), and Gould & Yee

(2013) showed that these are subject to even more severe selection so that even the two

recorded measurements is unexpectedly high.

Hence, the only near-term prospect for obtaining a statistical sample of microlens paral-

laxes from which to derive an unbiased mass function, as originally outlined by Han & Gould

(1995), is by combining Earth-based observations with those of a satellite in solar orbit.

There are several major benefits to such a study. First, it is the only way to obtain a mass-

based census of stellar, remnant, and planetary populations. Several components of this

population are dark or essentially dark including free-floating planets, brown dwarfs, neu-

tron stars, and black holes and therefore are essentially undetectable by any other method

unless they are orbiting other objects. In addition, even the luminous-star mass function

of distant populations (e.g., in the Galactic Bulge) is substantially more difficult to study

photometrically than is generally imagined. For example, a large fraction of stars are fainter

components in binary systems, with separations that are too small to be separately resolved,

but whose periods are too long (or primaries too faint) for study by the radial velocity

technique.

In 2014, we were granted Director’s Discretionary Time for a 100 hr pilot program to

determine the feasibility of using Spitzer as such a parallax satellite for microlenses observed

toward the Galactic Bulge. The main objective of this program was to measure lens masses
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in planetary events. However, especially in view of the fact that there is generally no way to

distinguish such planetary events from single-lens events in advance, a secondary goal was

to obtain parallaxes for an ensemble of single-lens events. Prior to this program, there had

been only one space-based parallax measurement, which was for a binary lens toward the

Small Magellanic Cloud (Dong et al. 2007).

Here we report on the first space-based parallax measurement of an isolated lens, OGLE-

2014-BLG-0939L. This measurement serves as a pathfinder and as a benchmark to test

ideas that have been discussed in the literature for almost 50 years about how to resolve

degeneracies in such events.

1.1. Degeneracies in Space-Based Microlens Parallaxes

As already pointed out by Refsdal (1966), space-based microlensing parallaxes are sub-

ject to a four-fold discrete degeneracy. This is because, to zeroth order, the satellite has a

fixed separation from Earth projected on the plane of the sky D⊥, and hence they measure

identical Einstein timescales tE = tE,sat = tE,⊕. Since the flux evolution F (t) of a single-lens

microlensing event is given by (Paczyński 1986),

F (t) = FSA(t) + FB; A[u(t)] =
u2 + 2√
u4 + 4u2

; [u(t)]2 = u2
0 +

(t− t0)
2

t2E
, (4)

they are therefore distinguished only by different times of peak t0 and different impact

parameters u0 (in addition to the nuisance parameters FS and FB, the source and blended-

light fluxes, respectively). The microlens parallax πE can nominally be derived from these

differences,

πE =
AU

D⊥

(∆t0
tE

,∆u0

)

, (5)

where ∆t0 = t0,sat − t0,⊕, ∆u0 = u0,sat − u0,⊕, and where the x-axis of the coordinate system

is set by the Earth-satellite vector D⊥. The problem is that while ∆t0 is unambiguously

determined from this procedure, u0 is actually a signed quantity whose amplitude is recovered

from simple point-lens events but whose sign is not (since it appears only quadratically in

Equation (4)). Hence, there are two solutions ∆u0,−,± = ±(|u0,sat| − |u0,⊕)|) for which the

satellite and Earth observe the source trajectory on the same side of the lens as each other

(with the “±” designating which side this is), and two others ∆u0,+,± = ±(|u0,sat| + |u0,⊕)|)
for which the source trajectories are seen on opposite sides of the lens (Gould 1994, Figure 1).

For most applications, only the second of these two degeneracies is important. That is,

the two solutions ∆u0,−,± have the same amplitude of parallax πE (as do the two solutions
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∆u0,+,±) and so yield the same lens mass and distance. In each case, the solutions differ only

in the direction of lens-source motion, which is usually not of major interest. However, the

two sets of solutions can yield radically different πE. Hence, if these sets of solutions really

cannot be distinguished, the value of the parallax measurement is seriously undermined. As

a result, considerable work has been applied over two decades to figuring out how to break

these degeneracies.

Before reviewing this work, however, one should note an important exacerbation of the

underlying problem. If the four solutions are placed in the (∆t0/tE,∆u0) plane, they of course

all lie along a vertical line of constant ∆t0. As pointed out by Gould (1995), the error ellipses

are also elongated in the vertical direction. This is because u0 is strongly correlated with the

nuisance parameters FS and FB (since all three enter Equation (4) symmetrically in (t− t0))

while t0, which enters anti-symmetrically, is not strongly correlated with other parameters.

This continuous degeneracy enhances the probability that the discretely degenerate solutions

will overlap and become a continuous degeneracy.

Four ideas have been proposed to break the ∆u0 four-fold degeneracy.

1.1.1. Measurement of ∆tE

Gould (1995) proposed to break the degeneracy by using the fact that the Earth-satellite

separation changes with time, and therefore tE,sat 6= tE,⊕. For near-circular, near-ecliptic or-

bits (characteristic of both Spitzer and Kepler), this works quite well for targets near the

ecliptic poles (Boutreux & Gould 1996) because the difference in timescales ∆tE is directly

proportional to ∆u0. However, it becomes increasing problematic for targets close to the

ecliptic, like the Galactic Bulge (Gaudi & Gould 1997), because for targets directly on the

ecliptic, ∆tE does not depend at all on ∆u0 to linear order. That is, ∆u0 completely disap-

pears from Equation (2.3) of Gould (1995).

1.1.2. Photometric Alignment of Space and Ground Observations

Gould (1995) also proposed to equip the satellite with a camera having identical pho-

tometric response to one on the ground, which would guarantee that FS,sat = FS,⊕ and so

effectively insulate ∆u0,−,± from uncertainties in FS by forcing the two ∆u0,−,± solutions to

move together in a highly-correlated way as FS is varied over its allowed range. While this

idea would be quite difficult to implement, Yee et al. (2012) demonstrated that observations

in different bands could be aligned quite tightly with each other based on color-color dia-

grams of reference stars. As a practical matter, it is not obvious that this technique can

be applied to Spitzer observations because Yee et al. (2012) predicted FS for a certain band

by interpolating between two other measured bands, whereas predicting Spitzer’s 3.6µm FS
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requires considerable extrapolation from ground-based bands.

1.1.3. Combining 1-D Parallaxes from Space and Ground

Gould (1999) suggested that the robust one-dimensional (1-D) parallax information

along the D⊥ (i.e., ∆t0) direction from Earth-satellite observations could be combined with

robust 1-D information along the direction of Earth’s projected acceleration from ground-

based observations (Gould et al. 1994) to break the ∆u0 degeneracy. This idea was specif-

ically motivated by the possibility of Spitzer parallax observations toward the Magellanic

Clouds, which are at high ecliptic latitude where these two directions are nearly orthogonal.

As he noted, it is substantially more difficult to apply this approach toward the Bulge where

the two directions are close to parallel.

1.1.4. High-Magnification Events (As Seen From Earth)

Gould & Yee (2012) pointed out that for sufficiently high-magnification events as ob-

served from Earth (|u0,⊕| ≪ 1), we have |u0,⊕| ≪ |u0,sat| and therefore |∆u0,−,±| ≃ |∆u0,+,±|,
so that there is no degeneracy in the amplitude of πE, although the direction degeneracy

persists. Moreover, if one of the satellite observations were actually made near t0,⊕, then

only 1–3 satellite observations would be required. They therefore advocated targeting such

events. However, since OGLE-2014-BLG-0939 was not a high-magnification event, this idea

is not directly relevant here and is included only for completeness.

Because this is the first space-based parallax measurement for a single-lens event, we

systematically study the role of all these ideas (except the last) for both characterizing and

breaking the degeneracies in practice. We note at the outset that two of these methods are

adversely affected by the Bulge being close to the ecliptic, and that this problem is more

pronounced for OGLE-2014-BLG-0939 than for typical events because it lies just +2.0◦ from

the ecliptic, i.e., about 3 times closer to it than Baade’s Window.

2. Observations

2.1. OGLE Observations

On 2014 May 28, the Optical Gravitational Lens Experiment (OGLE) alerted the com-

munity to a new microlensing event OGLE-2014-BLG-0939 based on observations with the

1.4 deg2 camera on its 1.3m Warsaw Telescope at the Las Campanas Observatory in Chile

using its Early Warning System (EWS) real-time event detection software (Udalski et al.

1994; Udalski 2003). Most observations were in I band, but with three V band observations

during the magnified portion of the event to determine the source color. At equatorial co-

ordinates (17:47:12.25, −21:22:58.7), this event lies in OGLE field BLG630, which implies
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that it is observed at relatively low cadence, roughly once per two nights.

2.2. Spitzer Observations

The structure of our Spitzer observing protocol is described in detail in Section 3.1 of

Udalski et al. (2014). In brief, observations were made during 38 2.63 hr windows between

HJD′ ≡HJD−245000 = 6814.0 and 6850.0. Each observation consisted of six dithered 30s

exposures in a fixed pattern using the 3.6µm channel on the IRAC camera. Observation

sequences were upload to Spitzer operations on Mondays at UT 15:00, for observations to be

carried out Thursday to Wednesday (with slight variations). As described in Udalski et al.

(2014), JCY and AG balanced various criteria to determine which targets to observe and

how often. In general, there were too many targets to be able to observe all viable targets

during each epoch.

At the decision time (June 2 UT 15:00, HJD′ 6811.1) for the first week of Spitzer obser-

vations, OGLE-2014-BLG-0939 was poorly understood, with acceptable fits having Earth-

based peaks over the range 6807 . t0,⊕ . 6845, i.e., from well before to (effectively, see below)

the end of the Spitzer observing interval. Nevertheless, it was put in the “daily” category

and observed during all eight epochs, in part because the source was bright, implying good

precision Spitzer photometry. The following week, it was degraded to “low” priority because

it was unclear that it would have low enough u0 for an effective parallax measurement, and

if u0 were low enough, the peak would be well in the future. However, due to a transcription

error, it was left in the “daily” file and observed during all six epochs. By upload time for

the third week it was clear first that t0,⊕ would occur during or near these observations and

second that the amplitude would be low (i.e., relatively high impact parameter u0,⊕ ∼ 1).

These considerations pulled in opposite directions, resulting in “moderate” priority and so

observations during six out of eight epochs. The fact that the predicted peak (from Earth)

was expected to occur at the beginning of the fourth week led to classifying the event as

“daily”, and so it was observed in all seven epochs. Because OGLE-2014-BLG-0939 lies rel-

atively far to the West, it moved out of the Spitzer observing window (set by the Sun-angle)

during the final week. Hence it was observed during all four of the available epochs (out of

eight total). Hence, OGLE-2014-BLG-0939 was observed relatively uniformly, close to once

per day, during the entire interval that it was observable, from 6814.1 to 6845.7.

3. Lightcurve Analysis

The analysis of the lightcurve is straightforward because the magnification for a single-

lens can be written in closed form (Equation (4)), i.e., A = (u2 + 2)/(u4 + 4u2)1/2. While the
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argument u in this equation is not as simple as in the case of rectilinear motion illustrated

in Equation (4), the deviations from that formula due to Earth’s motion are easily incor-

porated (Gould 2004). Spitzer’s offset from the center of Earth is treated just as any other

observatory, except that it is much larger, i.e., of order AU rather than R⊕. We adopt the

inertial frame that is coincident with the position and velocity of Earth at the peak of the

event, i.e., HJD′ = 6836.06. Any frame will yield equivalent results (after a suitable trans-

formation of parameters). However, this (quite standard) geocentric frame permits direct

comparison with the results from Earth-only observations, which turns out to be crucial to

understanding the degeneracies.

As expected (Refsdal 1966), the fit yields four distinct minima, which are listed in

Table 1. The best fit is shown in Figure 1. The remaining three fits look almost identical

and so are not shown to avoid clutter.

We note that the degeneracy between the ∆u0,−,± and ∆u0,+± is marginally broken,

with the latter two disfavored by ∆χ2 = 8 and 17, respectively. However, the two ∆u0,−,±

solutions are consistent with each other at < 1 σ.

In Table 1, we have fit with blending as a free parameter for both observatories. The

results show that for the preferred solutions, the best-fit blending for OGLE is negative

but consistent with zero at the 1 σ level. A low level of negative blending is permitted

because the baseline photometry is carried out against a mottled background of unresolved

turnoff stars, and the source can in principle land on a “hole” in this background. However,

plausible levels of negative blending due to this effect are FS ∼ −0.2 (on a flux scale of

I = 18 corresponding to one flux unit), which is an order of magnitude smaller than what

is observed. The most likely explanation is that the blending is very small or zero and has

fluctuated below zero in the fit because of the relatively large errors in this quantity, which

are typical for low-amplitude microlensing events.

In addition to the parameter values, in Table 1 we also list the heliocentric projected

velocity ṽhel,

ṽhel = ṽgeo + v⊕,⊥; ṽgeo =
πE,geo

π2
E

AU

tE,geo
, (6)

where v⊕,⊥(N,E) ≃ (−0.5, 28.9) km s−1 is the projected velocity of Earth at the peak of the

event and where we have explicitly noted that πE and tE are evaluated in the geocentric

frame (as in Table 1). Figure 2 shows the projected velocities and 1 σ error ellipses for each

of the four solutions.

We also show in Table 2 the parameter values and errors under the assumption that

FB = 0. As expected from the fact that FB was consistent with zero, the central values

hardly change after application of this restriction. Note also that while the errors in u0,
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tE, and πE,E (all of which are strongly correlated with FB) shrink dramatically under this

assumption, the errors in ṽhel hardly change. This is because the East component of ṽhel

(the one that is heavily correlated with tE) is directly determined from ∆t0 together with the

physical separation between Spitzer and Earth at the times of the respective peaks, both of

which are direct empirical quantities, which do not depend on the fitted Einstein timescale

tE.

4. Interpretation

Here we illustrate the power of measuring πE for estimating the mass and distance, even

when θE is not measured or constrained by considering the specific example of OGLE-2014-

BLG-0939.

The ∆u0,−± solutions are significantly favored by χ2 so we consider these first. The

solutions are nearly identical except that u0 and πE,N reverse sign. This is expected under

the “ecliptic degeneracy” (Skowron et al. 2011), which is particularly strong in the present

case because the source lies only 2◦ from the ecliptic.

The magnitude of ṽhel ∼ 250 km s−1 strongly favors a Galactic disk lens at intermediate

distances, an inference that follows from the relation between ṽ and µ

µ =
ṽ

AU
πrel. (7)

If the lens were in the Bulge (πrel . 0.02), then this would imply relative proper motion

µhel = 1.05 mas yr−1(πrel/0.02). This compares to typical Bulge lens-source proper motions

µ ∼ 4 mas yr−1. Since the probability of an event scales ∝ µ2, Bulge lenses are strongly

disfavored but not ruled out by this argument. On the other hand, for nearby lenses (πrel ≃
πL), the projected velocity ṽ is nearly equal to the space velocity of the lens in the frame of

the Sun, v⊥. Since there are very few stars moving at these speeds, this hypothesis is also

disfavored.

At intermediate distances, we would expect that the lens-source motion would be dom-

inated by the fact that both the observer and lens partake in the same flat rotation curve.

Thus, apart from the peculiar motion of the Sun and the lens (and random “noise” intro-

duced by the proper motion of the source), we expect the lens to be moving in the direction of

Galactic rotation (∼ 30◦ East of North) at the proper motion of SgrA*, µsgrA∗ = 6.4 mas yr−1.

In fact, one of these two solutions (∆u0,−,−) does show motion similar to this direction (52◦

East of North), making it the preferred solution.

To make a more precise comparison between the expected and observed heliocentric

motions, we measure the proper motion of the “source” (actually the “baseline object” that
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is coincident with the source) using four years of OGLE-IV data. We find,

µS,hel(N,E) = (−0.64 ± 0.45,−5.31 ± 0.45) mas yr−1. (8)

In principle it is possible that this “baseline object” is a blend of two or more stars. However,

because the blending FB from the microlensing fit is consistent with zero and because the

surface density of stars that are bright enough to substantially affect the proper motion

measurement is small, we tentatively assume that the proper motion of the microlensed

source and this “baseline object” are the same.

Thus, ignoring the peculiar motion of the lens, we then expect

µexp,hel = µsgrA∗φ̂− µS,hel = (6.2 ± 0.5, 8.5 ± 0.5) mas yr−1 (9)

where φ̂ is the direction of Galactic rotation. The direction of this proper motion 53.9◦±2.7◦

East of North. We show immediately below that when account is taken of the dispersion in

lens peculiar motions, the error bar widens to

tan−1 µexp,hel,E

µexp,hel,N

= 53.9◦ ± 8.5◦. (10)

This 1 σ range of proper motions is shown on Figure 2, which demonstrates that µexp,hel

agrees extremely well with ṽhel for the ∆u0,−,− solution, and disagrees with all the other

solutions. Of the three other solutions, only ∆0,+,− has a direction of ṽhel even remotely

close to µexp,hel, and this solution is disfavored by ∆χ2 = 17 (see Tables 1 and 2, and

Section 5.2, below).

Therefore, the degeneracy is decisively broken by the combination of the measurement

of the source proper motion µS and the fact that the value of ṽhel strongly indicates that

the lens is in the Galactic disk. This is a new form of degeneracy breaking that was not

previously anticipated.

We then apply Equation (7) to derive

πrel ∼ µexp,hel
AU

ṽhel
= 0.20 mas, M =

πrel

κπ2
E

∼ 0.23M⊙ (∆u0,−,−). (11)

Note that by inserting µexp,hel into the first expression in Equation (11), we are essentially

applying the method described in Section 1 (paragraph below Equation (3)), except that

we are making a more precise estimate of µhel, which is possible because the lens is already

identified as being in the disk and because we have a measurement of the source proper

motion.

What is the precision of these estimates? The error in the expected proper-motion

estimate along the direction of motion is about 5%, while the error in ṽhel in this direction
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is about 8%. The direction of motion is inclined ∼ 22◦ to the Galactic plane. Adopting

dispersion of 18 km s−1 perpendicular to and 33 km s−1 parallel to the Galactic plane, we

derive dispersions of 20 km s−1 perpendicular to and 30 km s−1 parallel to the direction of

motion. These must be multiplied by πL/πrel ∼ 1.6 to project them on the observer plane,

i.e., 32 km s−1 and 48 km s−1, respectively. The former was added in quadrature to the

proper motion measurement error to obtain the error bar in Equation (10). The latter

contributes 19% to the error in the comparison of amplitudes. Combining these in quadrature

yields πrel = 0.20 ± 0.04 mas, or DL = 3.1 ± 0.4 kpc. The error in M can be estimated

from 4GM/c2 = ṽhelµhelt
2
E,hel. The first two terms have the same fractional error as above

(25%), with only a very small fraction of this contributed by the lightcurve. Therefore

it is appropriate to treat the error in the last term (18%) as uncorrelated, which yields

M = 0.23 ± 0.07M⊙.

5. Degeneracies and Degeneracy-Breaking Information From the Lightcurve

As discussed in Section 4, we have decisively broken the four-fold degeneracy by mea-

suring the source proper motion µS and taking advantage of the fact that the lens lies in the

Galactic Disk, which has well-organized motion. However, it is also useful to ask how well

this degeneracy can be broken from lightcurve information alone since, in general, source

proper motion measurements can be very difficult or impossible and not all lenses are in the

Galactic Disk (or, more importantly, can be localized as being in the Disk).

5.1. Four-Fold Degeneracy

Figure 3 (modeled on Figure 1 of Gould 1994) gives a schematic view of the major

sources of information that go into the parallax measurement and thus into the origins of

the discrete and continuous degeneracies. The larger “ellipses” (which are so flattened that

they look like line segments) represent the measurements of t0 and u0 based on a fit to

OGLE data assuming rectilinear lens-source relative motion, i.e., according to Equation (4).

Properly speaking, we should plot results of a similar fit for the Spitzer lightcurve. However,

because there are no wing or baseline data from Spitzer, such a fit would be extremely poorly

constrained. Instead, we therefore plot the results of a fit with the Spitzer timescale fixed

at the best-fit OGLE value. This is legitimate because in the combined fit to the data, the

Spitzer timescale is very tightly constrained by the OGLE timescale, although the constraint

is slightly offset from equality due to Earth-Spitzer relative motion and lens-source relative

parallax. The parameters of these single-observatory (OGLE or Spitzer) fits are listed in

Table 3.

Within the framework of this diagram, any line segment can be drawn from an OGLE el-

lipse to a Spitzer ellipse. The length of this line segment relative to the radius of the Einstein
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ring (large circle) corresponds to the length of Earth-Spitzer projected separation D⊥ relative

to the projected Einstein radius r̃E ≡ AU/πE. That is, πE = (∆t20/t
2
E+∆u2

0)
1/2AU/D⊥. Sim-

ilarly, the direction of the line segment gives the direction of πE according to Equation (5).

Four classes of line segments can be drawn, corresponding to the four-fold degeneracy. In

addition, within each class, there is some freedom (primarily in the vertical direction to

place the line segments within the two error ellipses. Not represented in this diagram is the

fact that Einstein timescale tE also has an error bar, so that while ∆t0 is extremely well

determined, the fractional error in ∆t0/tE (the quantity going into πE) is basically the same

as the fractional error in tE. Nevertheless, since such errors are usually modest (∼ 10% in

the present case), the fractional errors in ∆u0 are likely to be larger, particularly for ∆u0,−±.

Thus, ∆u0 direction is generically most problematic both because it suffers from a four-fold

discrete degeneracy and because each of the four local error ellipses are elongated in the ∆u0

direction.

5.2. Degeneracy-Breaking Information

There are two striking differences between the full solution presented in Table 1 and

the schematic solution presented in Figure 3 and Table 3. First, many of the geocentric

parameters in Table 1 are better constrained than the OGLE-only parameters in Table 3.

This includes u0, tE, and especially FS and FB. These parameters are strongly correlated,

so it is not surprising that if the errors in one are improved, then all will be improved.

Nevertheless, this result is puzzling because the OGLE and Spitzer data appear to couple

only through tE, and we have already noted that the Spitzer data by themselves contain

virtually no information about tE.

Second, from the standpoint of the simple Paczyński (1986) fits that are tabulated in

Table 3 and whose differences are displayed in Figure 3, the u0,+,± and u0,−,± solutions appear

equally good. That is, the ±u0 solutions shown at the top and bottom of Figure 3 produce

exactly the same lightcurve in Equation (4), so there cannot be any χ2 difference between

one combination of these and another. However, according to Table 1, the u0,−,± solutions

are clearly preferred.

What is the source of additional information that reduces the parameter errors and dis-

criminates between the four discrete solutions when the two lightcurves are fit simultaneously

relative to when they are fit separately?

The answer cannot be either of the two previous suggestions that were summarized in

Sections 1.1.1 and 1.1.3. As just noted, the Spitzer data by themselves contain essentially no

timescale information, so ∆tE cannot be measured and hence cannot be used to discriminate

among solutions with different ∆u0. In addition, because the field lies extremely close to
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the ecliptic, ∆tE would give information about the parallax in a direction that is very nearly

parallel to ∆t0 (i.e., D⊥ axis). And, for the same reason (as already noted by Gould 1999),

the instantaneous Earth (or satellite) acceleration is almost perfectly aligned with D⊥, which

implies that the “1-D parallax” due to this instantaneous acceleration (Gould et al. 1994)

provides almost no information about ∆u0.

For the second effect (discrimination between discrete minima) the answer turns out to

be a previously unrecognized source of degeneracy-breaking information. The OGLE data, by

themselves, give an extremely crude 2-D parallax measurement (due to changing acceleration

of Earth over the course of the event), so crude that it would not normally be considered

of any use, and indeed by itself would not be of use in the present case. However, if we fix

πE,E = 0.24 (the preferred value for the ∆u0,−± solutions), the OGLE data by themselves

yield πE,N(u0 > 0) = 0.85 ± 0.95 and πE,N(u0 < 0) = −0.55 ± 0.54, which are consistent

with the fitted values from the full fit (−0.25 and +0.22) at the 1.2 and 1.4 sigma. However,

when fixed to πE,E = −0.06 (the preferred value for the ∆u0,+± solutions), the OGLE data

by themselves yield πE,N(u0 > 0) = 1.15 ± 0.91 and πE,N(u0 < 0) = −0.76 ± 0.54, which

are in conflict with the full-solution values at 2.7 σ and 3.9 σ, respectively. These values

explain both the quantitative preference for the ∆u0,−,± solutions and also why ∆u0,+,− is

substantially more disfavored than ∆u0,+,+.

However, this “hidden information” at most partly explains the first effect. Imposing a

mathematical constraint on πE,E (to reflect the physical constraint on ∆t0 coming from the

combination of data from Earth and Spitzer) does drive down the errors in (u0, tE, FS, FB)

relative to no constraint, but the errors in these quantities are still larger than those in

Table 3, which assume πE = 0. Moreover, the errors in the OGLE-only πE,N measurement

are an order of magnitude larger than the (local solution) errors in πE,N from the joint fit.

Thus, they are useful only for discriminating between widely differing πE,N solutions but not

for the modest tightening of individual solutions. Hence, the source of this aspect of the

improvement remains unknown.

We do note, however, that the relative improvement in flux errors compared to u0 errors

is well understood. The peak flux Fpeak and the baseline flux Fbase = FS + FB are both

extremely robust parameters. Hence, so is their difference:

Fpeak − Fbase = FS

( u2
0 + 2

√

u4
0 + 4u2

0

− 1
)

. (12)

Treating the left-hand side of this equation as a constant and differentiating yields,

δ ln u0

δ lnFs

=
( u2

0 + 2
√

u4
0 + 4u2

0

− 1
)u0(u

2
0 + 4)3/2

8
→ 0.48 (13)
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where the evaluation is for u0 = 1. Thus we expect that the fractional improvement in FS

will be about twice as great as that in u0.

Finally, we note that, overall, it is far more important to break the discrete degeneracy

than to tighten the errors on individual solutions, so the understanding of the former that

has been achieved is by the same token more important than the remaining uncertainty

about the latter.

5.3. Degeneracy Breaking From (I − [3.6])S Color

As discussed in Section 1.1.2, it may in principle be possible to break the four-fold

degeneracy by using external information to determine the “color” (log of the ratio of source

fluxes) between bands used for observations from Earth and the satellite. In our case, this

would be the (I− [3.6])S color. The usual way to determine the color of a microlensed source

is regression. That is if, for example, a series of V and I flux measurements are taken at

nearly the same time, FV (ti) = FS,VA(ti) +FB,V and FI(ti) = FS,IA(ti) +FB,I , then without

even having a model to tell one the magnifications A(ti), one can write FV (ti) = aFI(ti) + b,

yielding (V − I)S = −2.5 log(a) + const. This also implies that any model of the lightcurve

must yield very similar (V −I)S colors, assuming that there are substantial contemporaneous

magnified data in these two bands.

This logic breaks down for parallax observations because one does not know a priori

that the magnifications are the same for contemporaneous observations. Indeed, it is only if

these magnification differ that one can measure the parallax. Thus, different solutions may

have different colors. Indeed, Tables 1 and 2 show that the four solutions have substantially

different instrumental (I − [3.6])S colors, which range from (I − [3.6])S = −1.17 to −1.43.

Immediately below, we briefly describe how we use the method of Yee et al. (2012) to measure

the source color to be (I − [3.6])S = −1.216 ± 0.044. However, including this measurement

into the fits does not significantly alter the χ2 differences among the four solutions. The

reason appears to be that the color errors shown in Table 1 are of the same order as the

color differences between solutions, so that the solutions can accommodate constraints on

the color within this range without significantly changing χ2.

The problem would appear to be that we lack Spitzer baseline data, which substantially

degrades the determination the (I − [3.6])S color. For instance, if we put in an artificial

baseline measurement with a precision of 0.005 mag (which could, e.g., be acquired in future

Spitzer seasons), we find that the color error from the fits is reduced by a factor ∼ 3 from

∼ 0.20 mag to ∼ 0.07 mag. However, including both this artificial baseline measurement

and our actual color measurement only increases the χ2 difference between solutions from

8 to 10, despite the fact that both our real color measurement and our artificial baseline
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measurement agree perfectly with the preferred solution, while they do not agree with the

alternate solutions.

We conclude that, at least in this case, a fairly accurate (I − [3.6])S source color mea-

surement is not of substantial value in distinguishing between solutions.

For completeness, we outline our method of measuring the (I−[3.6])S source color, which

is a variant of the method used by Yee et al. (2012). In our first attempt, we constructed a

(I− [3.6]) vs. (V −I) color-color diagram by matching field stars in OGLE (V/I) and Spitzer

([3.6]) photometry, using the same instrumental system that was used for the lightcurve

photometry. We then measured the (V − I)S source color from regression (as described

above), with an error of 0.026 mag. However, because of the steep slope and significant

scatter in the color-color diagram, we found this approach to be unsatisfactory.

Therefore, we used H-band data of the event taken with the ANDICAM camera on the

1.3m CTIO-SMARTS telescope, combined with OGLE I-band data to measure (I − H)S,

and so derived (V −H)S, which has a factor two longer wavelength baseline than (V − I),

i.e., a factor ∼ 3 compared to a factor ∼ 1.5. Of course, these added steps led to larger errors

in the (V −H)S color (0.044 mag), but the color-color diagram had a substantially shallower

slope and also less scatter. We note that for future events, a more precise (I − [3.6])S source

color could be obtained by an increased number of V and H band observations.

6. Future Mass Measurement

As we have emphasized, the ensemble of single-lens parallax measurements can be used

to infer the mass function of stars (and other objects) in the field without any additional

data. In the present case, we have shown that the four-fold degeneracy is broken. Whether

broken, partially broken, or unbroken, the ensemble of measurements can be tested against

various trial mass functions using a likelihood estimator.

However, here we point out that essentially all such parallax measurements can be

turned into individual mass (and distance and transverse velocity) measurements by direct

imaging of the lens. We use OGLE-2014-BLG-0939 as a concrete example.

Figure 2 shows the measured projected velocities (and 1 σ error ellipses) of the four

solutions. The essence of this new method for measuring lens masses is simply to take a

late-time high-resolution image (e.g., using adaptive optics (AO)) of the source and lens

after they have separated. From the measured vector separation ∆θ and the elapsed time

∆t (and for the moment making the assumptions that the source and lens were coincident

at the peak of the event and that the image is taken at the same time of year as the event),



– 16 –

we can then derive the heliocentric proper motion,

µhel =
∆θ

∆t
. (14)

Comparing the direction of this vector to the four, clearly distinct directions of the solutions

shown in Figure 2 one can unambiguously pick out the correct solution. Then it is a simple

matter to obtain

πrel =
AU

ṽhel
µhel; M =

πrel

κπ2
E

. (15)

For example, the Giant Magellan Telescope (GMT) will have a FWHM in J band of

11 mas. For typical events, the proper motion will be 3–7 mas yr−1, and hence the source and

lens will have separated by 2 FWHM in 3–7 yr. In particular, by the time GMT is operational

(perhaps 2024), it is very likely that the lens and source of OGLE-2014-BLG-0939 will be

separated enough to make this measurement.

We now address various departures from our zeroth-order assumptions. First, the lens

and source are not coincident at peak but are separated by δθ = u0,⊕θE. However, since

θE . 1 mas while ∆θ & 20 mas, this will not interfere with choosing the correct solution

from comparison to Figure 2. Then, once the correct solution is known, the actual path of

the lens relative to the source will also be known, allowing µhel to be correctly estimated.

Second, the followup image may not be taken at the same time of year, which would lead

to parallax effects. However, since πrel < 1 mas in essentially all cases, while ∆θ & 20 mas,

this will again not interfere with choosing the correct solution, and hence allowing for proper

correction of parallax effects using the known πrel.

Third, in a substantial minority of cases, the microlensing event will be due to the less

massive (and so less luminous) member of a binary system. When the AO image is taken, the

brighter companion will be mistaken for the lens, yielding an incorrect µhel. Gould (2014)

discusses this problem in detail for the more difficult case that a 1-D geocentric parallax

has been measured (rather than the simpler 4-fold discrete degeneracy under consideration

here). In the current context, this will give rise to two types of discrepancy. First, the

inferred µhel will not agree with any of the directions of the four ṽhel solutions. Second,

the inferred mass will not agree with the photometric estimates based on the measured

brightness and inferred distance of the system. In these cases, one can take a second epoch

of AO observations to measure µhel of the brighter companion. If the orbit is relatively tight

(few AU, corresponding to . 1 mas) then the apparent motion of the companion relative

to the source will be similar to that of the lens, so the original inferred proper motion will

be correct, and it will be realized that the lens was the fainter (unseen) companion. If the

orbit is more than a few AU, then the proper motion of the companion between the first
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and second epochs will be very similar to the proper motion of the lens during the event,

so this companion proper motion can just be used for µhel. In this case, one will be able

to derive the projected separation of the binary as well by tracing the companion position

back to the time of the microlensing event when the lens had a known position relative to

the source. Note that the lack of binary signatures in the lightcurve will exclude some range

of binary companions. In the case of high-magnification events, this can include several

decades of projected separation (e.g., Batista et al. 2014), but even for more typical events

the exclusion range can be significant.

Fourth, in general, one needs to consider the impact of binary sources. Well separated

binary sources are not likely to be confused with the lens because they are unlikely to lie in

one of the four directions allowed by the four-fold degeneracy. In case of doubt, these can be

vetted by second-epoch observations in which they would show common proper motion with

the source. Unresolved binary sources might lead to displacement of the light centroid from

the position of the source. This is relatively unlikely simply because microlensing events are

heavily biased toward brighter sources, while flux ratios for solar-mass binaries tend to be

high. However, it is also possible to vet against this possibility by comparing the source flux

derived from the lightcurve (i.e., FS) with the observed flux in the high-resolution image, to

determine whether there is any unresolved light. In sum, the possibility of contamination

of the astrometric measurements by binary sources must be investigated on a case by case

basis, but generally is not expected to be a major problem.

Finally, dark lenses (free-floating planets, brown dwarfs, neutron stars, black holes, and

some white dwarfs) will obviously not appear in followup AO images. To understand this

case, let us consider how such a non-detection would be interpreted from AO observations

taken 10 years after the peak of OGLE-2014-BLG-0939. For definiteness, we will assume

that if the lens were at least 20 mas from the source it would have been detected. Recall

that there are basically two solutions, ṽhel,−± = 250 km s−1 and ṽhel,+± = 60 km s−1, with

corresponding πE ∼ 0.35 and 1.35, respectively.

Non-detection implies either that the lens is dark or that it is moving µhel < 2 mas yr−1.

In the latter case, according to Equation (15) the lens would have (πrel,M) = (< 0.04 mas, <

0.04M⊙) or (πrel,M) = (< 0.16 mas, < 0.01M⊙). Thus, if it were moving too slowly to be

seen (under the glare of the source) then it would also be dark (specifically because it was

substellar). Of course, this would not by itself allow one to estimate its mass: it could be

dark because it is a brown dwarf or because it is a massive black hole. However, applying a

likelihood function to an ensemble of such objects with microlens parallax measurements that

are definitely known not to be luminous will enable substantially more precise reconstruction

of the mass function than if the entire ensemble of detections must be considered.
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To illustrate this for OGLE-2014-BLG-0939, the assumption of an M = 5M⊙ black

hole would imply πrel = κMπ2
E, which yields 5 mas and 75 mas, for ∆u0,−,± and ∆u0,+,±,

respectively. While it would be very exciting to have such a black hole passing within 200 pc

(or 13 pc) of the Sun, the prior probability of this is extremely low, and it would be highly

discounted by any reasonable likelihood function.

7. Conclusions

The lightcurves of OGLE-2014-BLG-0939 as seen from Earth and Spitzer differ dra-

matically, with substantially different maximum magnifications and times of maximum. As

predicted by Refsdal (1966), this allows to measure the microlens parallax vector πE and

corresponding projected velocity ṽ up to a four-fold degeneracy.

In Section 4 we have developed a new way to break this degeneracy. First, we show

that the magnitude of the projected velocity ṽhel ∼ 250 km s−1, by itself, strongly favors a

disk lens. If the lens is then assumed to be in the disk, our measurement of the source

proper motion leads to a prediction for both the magnitude and direction of the lens-source

relative proper motion µhel. The direction of µhel is then found to agree closely with that

of the ṽhel of one of four solutions and is clearly inconsistent with all of the other three.

The magnitude of µhel then yields an estimate πrel = AUµhel/ṽhel = 0.20 ± 0.04 mas and

M = πrel/κπ
2
E = 0.23±0.07M⊙. This new method is very powerful, but can only be applied

to the minority of events that are amenable to source proper-motion measurements.

In Section 5, we have investigated three of the four ideas for breaking this degeneracy

based on photometric data alone that have been developed over the past 20 years, as discussed

in Sections 1.1.1–1.1.3. The fourth idea (Section 1.1.4) is not applicable to the present case.

We find that the degeneracy in the magnitude of these vectors is basically broken, but the

less important degeneracy in direction remains intact. We find that the mechanism for this

degeneracy breaking was not previously anticipated.

We note that the ∆u0.−.− solution picked out by the proper motion argument (Section 4)

is favored over the two ∆u0.+.± solutions by ∆χ2 = 8 and 17. While such χ2 differences would

not be completely convincing on their own, as confirmation of the already strong proper-

motion argument, they are compelling. In particular, of the three solutions whose directions

of ṽ conflict with the proper motion argument, only the ∆u0,+,− solution is remotely near

consistency, and this is disfavored in the lightcurve fit by ∆χ2 = 17. See Table 1 and

Figure 2.

An ensemble of such microlens parallax measurements, which are currently being made

under our ongoing Spitzer program, can measure the single-lens mass function, including

dark objects. We show that this measurement could be improved substantially by high-
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resolution imaging of the luminous lenses using, for example, the Giant Magellan Telescope,

roughly 10 years after the Spitzer-Earth parallax measurement.
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Paczyński, B. 1994, Acta Astron., 44, 317

Udalski, A., Yee, J.C., Gould, A., et al. 2014, ApJ, sumbitted, arXiv:1410.4219

Yee, J.C., Udalski, A., Sumi, T., et al. 2009, ApJ, 703, 2082

Yee, J.C., Svartzvald, Y., Gal-Yam, A. et al. 2012, ApJ, 755, 102

This preprint was prepared with the AAS LATEX macros v5.2.

http://arxiv.org/abs/1408.0797
http://arxiv.org/abs/1410.4219


– 21 –

Table 1: µlens Parameters (Free FB)

Parameter Unit u0,−,+ u0,−,− u0,+,+ u0,+,−

χ2/dof 273.1 273.7 281.5 290.2

/ 265 / 265 / 265 / 265

t0 − 6800 day 36.22 36.20 36.06 35.95

0.11 0.11 0.11 0.11

u0 0.922 -0.913 0.897 -0.843

0.132 0.129 0.125 0.110

tE day 22.87 22.99 22.91 23.87

2.14 2.12 2.10 2.04

πE,N -0.248 0.220 -1.370 1.325

0.072 0.067 0.172 0.158

πE,E 0.234 0.238 -0.060 0.024

0.028 0.030 0.025 0.018

ṽhel,N km/s -162.3 156.9 -55.5 54.2

7.2 5.5 2.2 2.1

ṽhel,E km/s 181.6 199.7 26.6 29.9

37.2 39.5 0.7 0.8

FS,OGLE 13.20 12.95 12.51 11.09

3.77 3.63 3.42 2.75

FB,OGLE -2.19 -1.93 -1.49 -0.08

3.77 3.62 3.42 2.75

FS,Spitzer 4.31 4.37 3.32 3.30

1.10 1.12 0.72 0.69

FB,Spitzer -0.08 -0.15 0.96 1.02

1.21 1.22 0.81 0.79
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Table 2: µlens Parameters (FB,OGLE = 0)

Parameter Unit u0,−,+ u0,−,− u0,+,+ u0,+,−

χ2/dof 273.6 274.1 281.8 290.2

/ 266 / 266 / 266 / 266

t0 − 6800 day 36.22 36.20 36.07 35.95

0.11 0.11 0.10 0.11

u0 0.840 -0.840 0.840 -0.840

0.002 0.002 0.002 0.002

tE day 24.29 24.27 23.92 23.93

0.16 0.16 0.15 0.15

πE,N -0.214 0.192 -1.292 1.321

0.044 0.043 0.029 0.029

πE,E 0.217 0.222 -0.052 0.024

0.006 0.008 0.018 0.033

ṽhel,N km/s -164.9 158.3 -56.4 54.3

4.8 4.7 1.3 1.3

ṽhel,E km/s 195.5 212.4 26.7 29.9

34.2 36.3 0.7 0.8

FS,OGLE 11.01 11.01 11.01 11.01

0.00 0.00 0.00 0.02

FB,OGLE 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

FS,Spitzer 3.85 3.93 3.10 3.29

0.68 0.69 0.47 0.50

FB,Spitzer 0.34 0.25 1.15 1.04

0.87 0.88 0.64 0.66
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Fig. 1.— Lightcurve of OGLE-2014-BLG-0939 as seen by OGLE from Earth (black) and

Spitzer (red) ∼ 1 AU to the West. While both are well-represented by Paczyński (1986)

curves (blue), they have substantially different maximum magnifications and times of max-

imum, whose differences yield a measurement of the “microlens parallax” vector πE. The

dashed portion of the Spitzer curve extends the model to what Spitzer could have observed if

it were not prevented from doing so by its Sun-angle constraints. Light curves are aligned to

the OGLE I-band scale (as is customary), even though Spitzer observations are at 3.6µm.

Lower panel shows residuals.
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Fig. 2.— Four-fold degeneracy in the heliocentric projected velocity ṽhel = ṽgeo +v⊕,⊥ where

ṽgeo = πE,geoAU/π2
EtE and v⊕,⊥ is the velocity of Earth projected on the sky at the peak of

the event. Solutions are labeled (±,±) by their ∆u0 degeneracy. Two smaller ṽhel (+,±)

are disfavored by ∆χ2 = 8 and 17. Note that the error ellipses for these are quite small

and partly obscured by the “arrow heads”. The dashed curves show the 1 σ error for the

expected direction ṽhel (same as µhel) based on the measured proper motion of the source

and the assumption that the lens is in the Galactic Disk. This proper motion measurement

decisively breaks the degeneracy.
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Fig. 3.— Origin of Refsdal (1966) four-fold degeneracy. Lightcurves from Figure 1 unam-

biguously determine peak times t0 (abscissa) as seen from Earth and Spitzer but only specify

u0 (ordinate) up to a sign. Hence, there are four ways to “connect” the Earth and Spitzer

measurements, which in each case is identified with the Earth-Spitzer projected separation

D⊥ to determine the microlens parallax vector πE according to Equation (5). Dashed circle

represents the Einstein radius, which brings the two axes to the same system by scaling

the abscissa by the Einstein timescale tE. For each possible solution, the connecting line

segment divided by D⊥ is equal to πE/AU. Two such line segments are shown explicitly,

with ∆τ ≡ ∆t0/tE. Hence there is a four-fold degeneracy in the direction of πE but only a

two-fold degeneracy in its magnitude. Error ellipses for each solution generate much smaller

errors, which become important only if the discrete degeneracy is broken.
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Table 3: Single-Observatory Parameters

Parameter Unit OGLE Spitzer

χ2/dof 242.9 28.0

/ 238 / 26

t0 − 6800 day 36.20 31.57

0.11 0.09

u0 1.012 0.668

0.166 0.052

tE day 21.48 21.48

2.31 0.00

FS 15.99 4.32

5.47 0.81

FB -4.98 -0.13

5.47 1.00
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