3,992 research outputs found

    From the chiral magnetic wave to the charge dependence of elliptic flow

    Get PDF
    The quark-gluon plasma formed in heavy ion collisions contains charged chiral fermions evolving in an external magnetic field. At finite density of electric charge or baryon number (resulting either from nuclear stopping or from fluctuations), the triangle anomaly induces in the plasma the Chiral Magnetic Wave (CMW). The CMW first induces a separation of the right and left chiral charges along the magnetic field; the resulting dipolar axial charge density in turn induces the oppositely directed vector charge currents leading to an electric quadrupole moment of the quark-gluon plasma. Boosted by the strong collective flow, the electric quadrupole moment translates into the charge dependence of the elliptic flow coefficients, so that v2(π+)<v2(π)v_2(\pi^+) < v_2(\pi^-) (at positive net charge). Using the latest quantitative simulations of the produced magnetic field and solving the CMW equation, we make further quantitative estimates of the produced v2v_2 splitting and its centrality dependence. We compare the results with the available experimental data.Comment: Contains 12 pages, 6 figures, written as a proceeding for the talk of Y. Burnier at the conference "P and CP-odd Effects in Hot and Dense Matter 2012" held in BN

    Ultrafast spectroscopy of propagating coherent acoustic phonons in GaN/InGaN heterostructures

    Full text link
    We show that large amplitude, coherent acoustic phonon wavepackets can be generated and detected in Inx_xGa1x_{1-x}N/GaN epilayers and heterostructures in femtosecond pump-probe differential reflectivity experiments. The amplitude of the coherent phonon increases with increasing Indium fraction xx and unlike other coherent phonon oscillations, both \textit{amplitude} and \textit{period} are strong functions of the laser probe energy. The amplitude of the oscillation is substantially and almost instantaneously reduced when the wavepacket reaches a GaN-sapphire interface below the surface indicating that the phonon wavepackets are useful for imaging below the surface. A theoretical model is proposed which fits the experiments well and helps to deduce the strength of the phonon wavepackets. Our model shows that localized coherent phonon wavepackets are generated by the femtosecond pump laser in the epilayer near the surface. The wavepackets then propagate through a GaN layer changing the local index of refraction, primarily through the Franz-Keldysh effect, and as a result, modulate the reflectivity of the probe beam. Our model correctly predicts the experimental dependence on probe-wavelength as well as epilayer thickness.Comment: 11 pages, 14 figure

    Optical studies of carrier and phonon dynamics in Ga_{1-x}Mn_{x}As

    Full text link
    We present a time-resolved optical study of the dynamics of carriers and phonons in Ga_{1-x}Mn_{x}As layers for a series of Mn and hole concentrations. While band filling is the dominant effect in transient optical absorption in low-temperature-grown (LT) GaAs, band gap renormalization effects become important with increasing Mn concentration in Ga_{1-x}Mn_{x}As, as inferred from the sign of the absorption change. We also report direct observation on lattice vibrations in Ga1-xMnxAs layers via reflective electro-optic sampling technique. The data show increasingly fast dephasing of LO phonon oscillations for samples with increasing Mn and hole concentration, which can be understood in term of phonon scattering by the holes.Comment: 13 pages, 3 figures replaced Fig.1 after finding a mistake in previous versio

    Alternating-Spin Ladders

    Full text link
    We investigate a two-leg spin ladder system composed of alternating-spin chains with two-different kind of spins. The fixed point properties are discussed by using spin-wave analysis and non-linear sigma model techniques. The model contains various massive phases, reflecting the interplay between the bond-alternation and the spin-alternation.Comment: 6 pages, revtex, to appear in PR

    Miniature micromachined quadrupole mass spectrometer array and method of making the same

    Get PDF
    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device

    KMT-2016-BLG-2052L: Microlensing Binary Composed of M Dwarfs Revealed from a Very Long Time-scale Event

    Full text link
    We present the analysis of a binary microlensing event KMT-2016-BLG-2052, for which the lensing-induced brightening of the source star lasted for 2 seasons. We determine the lens mass from the combined measurements of the microlens parallax \pie and angular Einstein radius \thetae. The measured mass indicates that the lens is a binary composed of M dwarfs with masses of M10.34 MM_1\sim 0.34~M_\odot and M20.17 MM_2\sim 0.17~M_\odot. The measured relative lens-source proper motion of μ3.9 mas yr1\mu\sim 3.9~{\rm mas}~{\rm yr}^{-1} is smaller than 5 mas yr1\sim 5~{\rm mas}~{\rm yr}^{-1} of typical Galactic lensing events, while the estimated angular Einstein radius of \thetae\sim 1.2~{\rm mas} is substantially greater than the typical value of 0.5 mas\sim 0.5~{\rm mas}. Therefore, it turns out that the long time scale of the event is caused by the combination of the slow μ\mu and large \thetae rather than the heavy mass of the lens. From the simulation of Galactic lensing events with very long time scales (tE100t_{\rm E}\gtrsim 100 days), we find that the probabilities that long time-scale events are produced by lenses with masses 1.0 M\geq 1.0~M_\odot and 3.0 M\geq 3.0~M_\odot are 19%\sim 19\% and 2.6\%, respectively, indicating that events produced by heavy lenses comprise a minor fraction of long time-scale events. The results indicate that it is essential to determine lens masses by measuring both \pie and \thetae in order to firmly identify heavy stellar remnants such as neutron stars and black holes.Comment: 9 pages, 11 figure

    Chirality-Selective Excitation of Coherent Phonons in Carbon Nanotubes

    Full text link
    Using pre-designed trains of femtosecond optical pulses, we have selectively excited coherent phonons of the radial breathing mode of specific-chirality single-walled carbon nanotubes within an ensemble sample. By analyzing the initial phase of the phonon oscillations, we prove that the tube diameter initially increases in response to ultrafast photoexcitation. Furthermore, from excitation profiles, we demonstrate that an excitonic absorption peak of carbon nanotubes periodically oscillates as a function of time when the tube diameter undergoes radial breathing mode oscillations.Comment: 4 pages, 4 figure
    corecore