9 research outputs found

    The Human Lipodystrophy Gene Product Berardinelli-Seip Congenital Lipodystrophy 2/Seipin Plays a Key Role in Adipocyte Differentiation

    No full text
    Mutations in the Berardinelli-Seip congenital lipodystrophy 2 gene (BSCL2) are the underlying defect in patients with congenital generalized lipodystrophy type 2. BSCL2 encodes a protein called seipin, whose function is largely unknown. In this study, we investigated the role of Bscl2 in the regulation of adipocyte differentiation. Bscl2 mRNA is highly up-regulated during standard hormone-induced adipogenesis in 3T3-L1 cells in vitro. However, this up-regulation does not occur during mesenchymal stem cell (C3H10T1/2 cells) commitment to the preadipocyte lineage. Knockdown of Bscl2 by short hairpin RNA in C3H10T1/2 cells has no effect on bone morphogenetic protein-4-induced preadipocyte commitment. However, knockdown in 3T3-L1 cells prevents adipogenesis induced by a standard hormone cocktail, but adipogenesis can be rescued by the addition of peroxisome proliferator-activated receptor-γ agonist pioglitazone at an early stage of differentiation. Interestingly, pioglitazone-induced differentiation in the absence of standard hormone is not associated with up-regulated Bscl2 expression. On the other hand, short hairpin RNA-knockdown of Bscl2 largely blocks pioglitazone-induced adipose differentiation. These experiments suggest that Bscl2 may be essential for normal adipogenesis; it works upstream or at the level of peroxisome proliferator-activated receptor-γ, enabling the latter to exert its full activity during adipogenesis. Loss of Bscl2 function thus interferes with the normal transcriptional cascade of adipogenesis during fat cell differentiation, resulting in near total loss of fat or lipodystrophy

    Effect of Solution Composition of Plasmid DNA on Gene Transfection Following Liver Surface Administration in Mice

    Get PDF
    We investigated the effect of plasmid DNA (pDNA) solution composition on gene transfection following liver surface administration in mice. Gene transfection experiments in situ and in vivo were performed using the following pDNA solutions: dextrose solution, NaCl solution, phosphate buffer, phosphate-buffered saline, Tris/HCl buffer with EDTA, Tris/HCl buffer with EDTA and Triton X-100, and water. In in situ experiments, we used a glass cylindrical diffusion cell that limited the contact area between the liver surface and the naked pDNA solution. The gene transfection at the site of diffusion cell attachment increased in hypotonic solution, and decreased in hypertonic solution, compared with isotonic solution. In in vivo experiments, instillation of naked pDNA solution onto the liver surface using a micropipette caused no significant differences in gene transfection in the applied lobe. These results suggest that it is important to select the optimal pDNA solution composition to control the gene transfection
    corecore