33 research outputs found

    Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cells secretome?

    Get PDF
    Introduction: The use of human umbilical cord Wharton Jelly-derived mesenchymal stem cells (hWJ-MSCs) has been considered a new potential source for future safe applications in regenerative medicine. Indeed, the application of hWJ-MSCs into different animal models of disease, including those from the central nervous system, has shown remarkable therapeutic benefits mostly associated with their secretome. Conventionally, hWJ-MSCs are cultured and characterized under normoxic conditions (21 % oxygen tension), although the oxygen levels within tissues are typically much lower (hypoxic) than these standard culture conditions. Therefore, oxygen tension represents an important environmental factor that may affect the performance of mesenchymal stem cells in vivo. However, the impact of hypoxic conditions on distinct mesenchymal stem cell characteristics, such as the secretome, still remains unclear. Methods: In the present study, we have examined the effects of normoxic (21 % O2) and hypoxic (5 % O2) conditions on the hWJ-MSC secretome. Subsequently, we address the impact of the distinct secretome in the neuronal cell survival and differentiation of human neural progenitor cells. Results: The present data indicate that the hWJ-MSC secretome collected from normoxic and hypoxic conditions displayed similar effects in supporting neuronal differentiation of human neural progenitor cells in vitro. However, proteomic analysis revealed that the use of hypoxic preconditioning led to the upregulation of several proteins within the hWJ-MSC secretome. Conclusions: Our results suggest that the optimization of parameters such as hypoxia may lead to the development of strategies that enhance the therapeutic effects of the secretome for future regenerative medicine studies and applications. © 2015 Teixeira et al.Portuguese Foundation for Science and Technology (FCT) (Ciência 2007 program and IF Development Grant (AJS); and pre-doctoral fellowships to FGT (SFRH/69637/ 2010) and SIA (SFRH/BD/81495/2011); Canada Research Chairs (LAB) and a SSE Postdoctoral Fellowship (KMP); The National Mass Spectrometry Network (RNEM) (REDE/1506/REM/2005); co-funded by Programa Operacional Regional do Norte (ON.2 – O Novo Norte), ao abrigo do Quadro de Referência Estratégico Nacional (QREN), através do Fundo Europeu de Desenvolvimento Regional (FEDER).info:eu-repo/semantics/publishedVersio

    Development of three-dimensional tissue engineered bone-oral mucosal composite models

    Get PDF
    Tissue engineering of bone and oral mucosa have been extensively studied independently. The aim of this study was to develop and investigate a novel combination of bone and oral mucosa in a single 3D in vitro composite tissue mimicking the natural structure of alveolar bone with an overlying oral mucosa. Rat osteosarcoma (ROS) cells were seeded into a hydroxyapatite/tri-calcium phosphate scaffold and bone constructs were cultured in a spinner bioreactor for 3 months. An engineered oral mucosa was fabricated by air/liquid interface culture of immortalized OKF6/TERET-2 oral keratinocytes on collagen gel-embedded fibroblasts. EOM was incorporated into the engineered bone using a tissue adhesive and further cultured prior to qualitative and quantitative assessments. Presto Blue assay revealed that ROS cells remained vital throughout the experiment. The histological and scanning electron microscope examinations showed that the cells proliferated and densely populated the scaffold construct. Micro computed tomography (micro-CT) scanning revealed an increase in closed porosity and a decrease in open and total porosity at the end of the culture period. Histological examination of bone-oral mucosa model showed a relatively differentiated parakeratinized epithelium, evenly distributed fibroblasts in the connective tissue layer and widely spread ROS cells within the bone scaffold. The feasibility of fabricating a novel bone-oral mucosa model using cell lines is demonstrated. Generating human ‘normal’ cell-based models with further characterization is required to optimize the model for in vitro and in vivo applications

    Numerical methods for the design and description of in vitro expansion processes of human mesenchymal stem cells

    Get PDF
    Human mesenchymal stem cells (hMSCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction or inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hMSC-based therapies, in vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible, and economic in vitro expansion of hMSCs for autologous and allogeneic therapies can be problematic because the cell material is restricted and the cells are sensitive to environmental changes. It is beneficial to collect detailed information on the hydrodynamic conditions and cell growth behavior in a bioreactor system, in order to develop a so called “Digital Twin” of the cultivation system and expansion process. Numerical methods, such as Computational Fluid Dynamics (CFD) which has become widely used in the biotech industry for studying local characteristics within bioreactors or kinetic growth modelling, provide possible solutions for such tasks. In this review, we will present the current state-of-the-art for the in vitro expansion of hMSCs. Different numerical tools, including numerical fluid flow simulations and cell growth modelling approaches for hMSCs, will be presented. In addition, a case study demonstrating the applicability of CFD and kinetic growth modelling for the development of an microcarrier-based hMSC process will be shown

    Identifying associations between diabetes and acute respiratory distress syndrome in patients with acute hypoxemic respiratory failure: an analysis of the LUNG SAFE database

    Get PDF
    Background: Diabetes mellitus is a common co-existing disease in the critically ill. Diabetes mellitus may reduce the risk of acute respiratory distress syndrome (ARDS), but data from previous studies are conflicting. The objective of this study was to evaluate associations between pre-existing diabetes mellitus and ARDS in critically ill patients with acute hypoxemic respiratory failure (AHRF). Methods: An ancillary analysis of a global, multi-centre prospective observational study (LUNG SAFE) was undertaken. LUNG SAFE evaluated all patients admitted to an intensive care unit (ICU) over a 4-week period, that required mechanical ventilation and met AHRF criteria. Patients who had their AHRF fully explained by cardiac failure were excluded. Important clinical characteristics were included in a stepwise selection approach (forward and backward selection combined with a significance level of 0.05) to identify a set of independent variables associated with having ARDS at any time, developing ARDS (defined as ARDS occurring after day 2 from meeting AHRF criteria) and with hospital mortality. Furthermore, propensity score analysis was undertaken to account for the differences in baseline characteristics between patients with and without diabetes mellitus, and the association between diabetes mellitus and outcomes of interest was assessed on matched samples. Results: Of the 4107 patients with AHRF included in this study, 3022 (73.6%) patients fulfilled ARDS criteria at admission or developed ARDS during their ICU stay. Diabetes mellitus was a pre-existing co-morbidity in 913 patients (22.2% of patients with AHRF). In multivariable analysis, there was no association between diabetes mellitus and having ARDS (OR 0.93 (0.78-1.11); p = 0.39), developing ARDS late (OR 0.79 (0.54-1.15); p = 0.22), or hospital mortality in patients with ARDS (1.15 (0.93-1.42); p = 0.19). In a matched sample of patients, there was no association between diabetes mellitus and outcomes of interest. Conclusions: In a large, global observational study of patients with AHRF, no association was found between diabetes mellitus and having ARDS, developing ARDS, or outcomes from ARDS. Trial registration: NCT02010073. Registered on 12 December 2013

    Epidemiology and patterns of tracheostomy practice in patients with acute respiratory distress syndrome in ICUs across 50 countries

    Get PDF
    Background: To better understand the epidemiology and patterns of tracheostomy practice for patients with acute respiratory distress syndrome (ARDS), we investigated the current usage of tracheostomy in patients with ARDS recruited into the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG-SAFE) study. Methods: This is a secondary analysis of LUNG-SAFE, an international, multicenter, prospective cohort study of patients receiving invasive or noninvasive ventilation in 50 countries spanning 5 continents. The study was carried out over 4 weeks consecutively in the winter of 2014, and 459 ICUs participated. We evaluated the clinical characteristics, management and outcomes of patients that received tracheostomy, in the cohort of patients that developed ARDS on day 1-2 of acute hypoxemic respiratory failure, and in a subsequent propensity-matched cohort. Results: Of the 2377 patients with ARDS that fulfilled the inclusion criteria, 309 (13.0%) underwent tracheostomy during their ICU stay. Patients from high-income European countries (n = 198/1263) more frequently underwent tracheostomy compared to patients from non-European high-income countries (n = 63/649) or patients from middle-income countries (n = 48/465). Only 86/309 (27.8%) underwent tracheostomy on or before day 7, while the median timing of tracheostomy was 14 (Q1-Q3, 7-21) days after onset of ARDS. In the subsample matched by propensity score, ICU and hospital stay were longer in patients with tracheostomy. While patients with tracheostomy had the highest survival probability, there was no difference in 60-day or 90-day mortality in either the patient subgroup that survived for at least 5 days in ICU, or in the propensity-matched subsample. Conclusions: Most patients that receive tracheostomy do so after the first week of critical illness. Tracheostomy may prolong patient survival but does not reduce 60-day or 90-day mortality. Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013

    Spontaneous Breathing in Early Acute Respiratory Distress Syndrome: Insights From the Large Observational Study to UNderstand the Global Impact of Severe Acute Respiratory FailurE Study

    Get PDF
    OBJECTIVES: To describe the characteristics and outcomes of patients with acute respiratory distress syndrome with or without spontaneous breathing and to investigate whether the effects of spontaneous breathing on outcome depend on acute respiratory distress syndrome severity. DESIGN: Planned secondary analysis of a prospective, observational, multicentre cohort study. SETTING: International sample of 459 ICUs from 50 countries. PATIENTS: Patients with acute respiratory distress syndrome and at least 2 days of invasive mechanical ventilation and available data for the mode of mechanical ventilation and respiratory rate for the 2 first days. INTERVENTIONS: Analysis of patients with and without spontaneous breathing, defined by the mode of mechanical ventilation and by actual respiratory rate compared with set respiratory rate during the first 48 hours of mechanical ventilation. MEASUREMENTS AND MAIN RESULTS: Spontaneous breathing was present in 67% of patients with mild acute respiratory distress syndrome, 58% of patients with moderate acute respiratory distress syndrome, and 46% of patients with severe acute respiratory distress syndrome. Patients with spontaneous breathing were older and had lower acute respiratory distress syndrome severity, Sequential Organ Failure Assessment scores, ICU and hospital mortality, and were less likely to be diagnosed with acute respiratory distress syndrome by clinicians. In adjusted analysis, spontaneous breathing during the first 2 days was not associated with an effect on ICU or hospital mortality (33% vs 37%; odds ratio, 1.18 [0.92-1.51]; p = 0.19 and 37% vs 41%; odds ratio, 1.18 [0.93-1.50]; p = 0.196, respectively ). Spontaneous breathing was associated with increased ventilator-free days (13 [0-22] vs 8 [0-20]; p = 0.014) and shorter duration of ICU stay (11 [6-20] vs 12 [7-22]; p = 0.04). CONCLUSIONS: Spontaneous breathing is common in patients with acute respiratory distress syndrome during the first 48 hours of mechanical ventilation. Spontaneous breathing is not associated with worse outcomes and may hasten liberation from the ventilator and from ICU. Although these results support the use of spontaneous breathing in patients with acute respiratory distress syndrome independent of acute respiratory distress syndrome severity, the use of controlled ventilation indicates a bias toward use in patients with higher disease severity. In addition, because the lack of reliable data on inspiratory effort in our study, prospective studies incorporating the magnitude of inspiratory effort and adjusting for all potential severity confounders are required
    corecore