2,565 research outputs found
Multi-Item Single-Vendor-Single-Buyer Problem with Consideration of Transportation Quantity Discount
This paper deals with the problem of shipping multiple commodities from a single vendor to a single buyer. Each commodity is assumed to be constantly consumed at the buyer, and periodically replenished from the vendor. Furthermore, these replenishments are restricted to happen at discrete time instants, e.g., a certain time of the day or a certain day of the week. At any such time instant, transportation cost depends on the shipment quantity according to certain discount scheme. Specifically, we consider two transportation quantity discount schemes: LTL (less-than-truckload) incremental discount and TL (truckload) discount. For each case, we develop MIP (mixed integer programming) mathematical model whose objective is to make an integrated replenishment and transportation decision such that the total system cost is minimized. We also derive optimal solution properties and give numerical studies to investigate the problem.Singapore-MIT Alliance (SMA
Bandgaps in the propagation and scattering of surface water waves over cylindrical steps
Here we investigate the propagation and scattering of surface water waves by
arrays of bottom-mounted cylindrical steps. Both periodic and random
arrangements of the steps are considered. The wave transmission through the
arrays is computed using the multiple scattering method based upon a recently
derived formulation. For the periodic case, the results are compared to the
band structure calculation. We demonstrate that complete band gaps can be
obtained in such a system. Furthermore, we show that the randomization of the
location of the steps can significantly reduce the transmission of water waves.
Comparison with other systems is also discussed.Comment: 4 pages, 3 figure
Unilateral fatiguing exercise and its effect on ipsilateral and contralateral resting mechanomyographic mean frequency between aerobic populations
The purpose of this investigation was to establish a better understanding of contralateral training and its effects between homologous muscles following unilateral fatiguing aerobic exercise during variable resting postural positions, and to determine if any observable disparities could be attributed to the differences between the training ages of the participants. Furthermore, we hypothesized that we would observe a contralateral cross-over effect for both groups, with the novice trained group having the higher mechanomyographic mean frequency values in both limbs, across all resting postural positions. Twenty healthy male subjects exercised on an upright cycle ergometer, using only their dominate limb, for 30 min at 60% of their VO2 peak. Resting electromyographic and mechanomyographic signals were measured prior to and following fatiguing aerobic exercise. We found that there were resting mechanomyographic mean frequency differences of approximately 1.9 ± 0.8% and 0.9 ± 0.7%; 9.1 ± 0.3% and 10.2 ± 3.7%; 2 ± 1.8% and 3 ± 1.4%; and 0.9 ± 0.6% and 0.2 ± 1.3% between the novice and advanced trained groups (for the upright sitting position with legs extended 180°; upright sitting position with legs bent 90°; lying supine position with legs extended 180°; and lying supine with legs bent 90°, respectively), from the dominant and nondominant limbs, respectively. We have concluded that despite the relative matching of exercise intensity between groups, acute responses to contralateral training become less accentuated as one progresses in training age. Additionally, our results lend support to the notion that there are multiple, overlapping neural and mechanical mechanisms concurrently contributing to the contralateral cross-over effects observed across the postexercise resting time course.Ye
Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix.
Metastasis requires tumor cells to navigate through a stiff stroma and squeeze through confined microenvironments. Whether tumors exploit unique biophysical properties to metastasize remains unclear. Data show that invading mammary tumor cells, when cultured in a stiffened three-dimensional extracellular matrix that recapitulates the primary tumor stroma, adopt a basal-like phenotype. Metastatic tumor cells and basal-like tumor cells exert higher integrin-mediated traction forces at the bulk and molecular levels, consistent with a motor-clutch model in which motors and clutches are both increased. Basal-like nonmalignant mammary epithelial cells also display an altered integrin adhesion molecular organization at the nanoscale and recruit a suite of paxillin-associated proteins implicated in invasion and metastasis. Phosphorylation of paxillin by Src family kinases, which regulates adhesion turnover, is similarly enhanced in the metastatic and basal-like tumor cells, fostered by a stiff matrix, and critical for tumor cell invasion in our assays. Bioinformatics reveals an unappreciated relationship between Src kinases, paxillin, and survival of breast cancer patients. Thus adoption of the basal-like adhesion phenotype may favor the recruitment of molecules that facilitate tumor metastasis to integrin-based adhesions. Analysis of the physical properties of tumor cells and integrin adhesion composition in biopsies may be predictive of patient outcome
High Magnetic Field Microwave Conductivity of 2D Electrons in an Array of Antidots
We measure the high magnetic field () microwave conductivity,
Re, of a high mobility 2D electron system containing an antidot
array. Re vs frequency () increases strongly in the regime of
the fractional quantum Hall effect series, with Landau filling .
At microwave , Re vs exhibits a broad peak centered around
. On the peak, the 10 GHz Re can exceed its dc-limit
value by a factor of 5. This enhanced microwave conductivity is unobservable
for temperature K, and grows more pronounced as is
decreased. The effect may be due to excitations supported by the antidot edges,
but different from the well-known edge magnetoplasmons.Comment: 4 pages, 3 figures, revtex
Localization of electromagnetic waves in a two dimensional random medium
Motivated by previous investigations on the radiative effects of the electric
dipoles embedded in structured cavities, localization of electromagnetic waves
in two dimensions is studied {\it ab initio} for a system consisting of many
randomly distributed two dimensional dipoles. A set of self-consistent
equations, incorporating all orders of multiple scattering of the
electromagnetic waves, is derived from first principles and then solved
numerically for the total electromagnetic field. The results show that
spatially localized electromagnetic waves are possible in such a simple but
realistic disordered system. When localization occurs, a coherent behavior
appears and is revealed as a unique property differentiating localization from
either the residual absorption or the attenuation effects
Highly Variable Recessive Lthal or Nearly Lethal Mutation Rates During Germ-Line Development of Male Drosophila Melanogaster
Each cell of higher organism adults is derived from a fertilized egg through a series of divisions, during which mutations can occur. Both the rate and timing of mutations can have profound impacts on both the individual and the population, because mutations that occur at early cell divisions will affect more tissues and are more likely to be transferred to the next generation. Using large-scale multigeneration screening experiments for recessive lethal or nearly lethal mutations of Drosophila melanogaster and recently developed statistical analysis, we show for male D. melanogaster that (i) mutation rates (for recessive lethal or nearly lethal) are highly variable during germ cell development; (ii) first cell cleavage has the highest mutation rate, which drops substantially in the second cleavage or the next few cleavages; (iii) the intermediate stages, after a few cleavages to right before spermatogenesis, have at least an order of magnitude smaller mutation rate; and (iv) spermatogenesis also harbors a fairly high mutation rate. Because germ-line lineage shares some (early) cell divisions with somatic cell lineage, the first conclusion is readily extended to a somatic cell lineage. It is conceivable that the first conclusion is true for most (if not all) higher organisms, whereas the other three conclusions are widely applicable, although the extent may differ from species to species. Therefore, conclusions or analyses that are based on equal mutation rates during development should be taken with caution. Furthermore, the statistical approach developed can be adopted for studying other organisms, including the human germ-line or somatic mutational patterns
Edge reconstruction in the fractional quantum Hall regime
The interplay of electron-electron interaction and confining potential can
lead to the reconstruction of fractional quantum Hall edges. We have performed
exact diagonalization studies on microscopic models of fractional quantum Hall
liquids, in finite size systems with disk geometry, and found numerical
evidence of edge reconstruction under rather general conditions. In the present
work we have taken into account effects like layer thickness and Landau level
mixing, which are found to be of quantitative importance in edge physics. Due
to edge reconstruction, additional nonchiral edge modes arise for both
incompressible and compressible states. These additional modes couple to
electromagnetic fields and thus can be detected in microwave conductivity
measurements. They are also expected to affect the exponent of electron Green's
function, which has been measured in tunneling experiments. We have studied in
this work the electric dipole spectral function that is directly related to the
microwave conductivity measurement. Our results are consistent with the
enhanced microwave conductivity observed in experiments performed on samples
with an array of antidots at low temperatures, and its suppression at higher
temperatures. We also discuss the effects of the edge reconstruction on the
single electron spectral function at the edge.Comment: 19 pages, 12 figure
Paradoxical roles of antioxidant enzymes:Basic mechanisms and health implications
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate “paradoxical” outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of “antioxidant” nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that “paradoxical” roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways
- …