The interplay of electron-electron interaction and confining potential can
lead to the reconstruction of fractional quantum Hall edges. We have performed
exact diagonalization studies on microscopic models of fractional quantum Hall
liquids, in finite size systems with disk geometry, and found numerical
evidence of edge reconstruction under rather general conditions. In the present
work we have taken into account effects like layer thickness and Landau level
mixing, which are found to be of quantitative importance in edge physics. Due
to edge reconstruction, additional nonchiral edge modes arise for both
incompressible and compressible states. These additional modes couple to
electromagnetic fields and thus can be detected in microwave conductivity
measurements. They are also expected to affect the exponent of electron Green's
function, which has been measured in tunneling experiments. We have studied in
this work the electric dipole spectral function that is directly related to the
microwave conductivity measurement. Our results are consistent with the
enhanced microwave conductivity observed in experiments performed on samples
with an array of antidots at low temperatures, and its suppression at higher
temperatures. We also discuss the effects of the edge reconstruction on the
single electron spectral function at the edge.Comment: 19 pages, 12 figure