378 research outputs found

    Polymorphism of the pig-implantation protein 3 (preis3) gene and its association with litter size traits

    Get PDF
    The pre-implantation protein 3 (prei3), which might play a role in pre-implantation embryogenesis, is one of the promising candidate genes for litter size traits in pigs. In this study, a single nucleotide polymorphism (SNP: T802G) in intron 6 of the pig prei3 gene was detected and a genotyping assay for this SNP was developed. An association study for this SNP with litter size was performed in two independent populations. One population consisted of crossbred sows derived from Landrace, Large White, Chinese Tongcheng and/or Chinese Meishan (Line DIV). The other population constituted of crossbred animals derived from Chinese Qingping and Duroc (QD). Statistical analysis demonstrated that, in first parity, 2.65 more piglets were born and 3.82 more piglets were born alive in sows in Line DIV with genotype TT than with genotype GG. For second and subsequent litters, in both the DIV and QD lines there were significant differences in the number of piglets born alive between TG and GG sows, with the TG sows producing more piglets born alive than the GG sows. These results suggest that the prei3 SNP is significantly associated with litter size in the two populations studied, and could be useful in selection for increasing litter size in pigs. Further investigations on more pig populations with large sample sizes are needed to confirm this. South African Journal of Animal Science Vol. 36(3) 2006: 209-21

    Understanding the chemical mechanism behind photoinduced enhanced Raman spectroscopy

    Get PDF
    Photoinduced enhanced Raman spectroscopy (PIERS) is a new surface enhanced Raman spectroscopy (SERS) modality with a 680% Raman signal enhancement of adsorbed analytes over that of SERS. Despite the explosion in recent demonstrations, the PIERS mechanism remains undetermined. Using X-ray and time-resolved optical spectroscopies, electron microscopy, cyclic voltammetry, and density functional theory simulations, we elucidate the atomic-scale mechanism behind PIERS. Stable PIERS substrates were fabricated using self-organized arrays of TiO2 nanotubes with controlled oxygen vacancy doping and size-controlled silver nanoparticles. The key source of PIERS vs SERS enhancement is an increase in the Raman polarizability of the adsorbed analyte upon photoinduced charge transfer. A balance between improved crystallinity, which enhances charge transfer due to higher electron mobility but decreases light absorption, and increased oxygen vacancy defect concentration, which increases light absorption, is critical. This work enables the rational design of PIERS substrates for sensing

    Defect Passivation in Lead-Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and Solar Cells.

    Get PDF
    Funder: Xunta de Galicia; Id: http://dx.doi.org/10.13039/501100010801Lead-halide perovskites (LHPs), in the form of both colloidal nanocrystals (NCs) and thin films, have emerged over the past decade as leading candidates for next-generation, efficient light-emitting diodes (LEDs) and solar cells. Owing to their high photoluminescence quantum yields (PLQYs), LHPs efficiently convert injected charge carriers into light and vice versa. However, despite the defect-tolerance of LHPs, defects at the surface of colloidal NCs and grain boundaries in thin films play a critical role in charge-carrier transport and nonradiative recombination, which lowers the PLQYs, device efficiency, and stability. Therefore, understanding the defects that play a key role in limiting performance, and developing effective passivation routes are critical for achieving advances in performance. This Review presents the current understanding of defects in halide perovskites and their influence on the optical and charge-carrier transport properties. Passivation strategies toward improving the efficiencies of perovskite-based LEDs and solar cells are also discussed

    Thermal stress induces glycolytic beige fat formation via a myogenic state.

    Get PDF
    Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fibre-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which physiological or pathological cues evoke developmental plasticity remain incompletely understood. Here we report a type of beige adipocyte that has a critical role in chronic cold adaptation in the absence of β-adrenergic receptor signalling. This beige fat is distinct from conventional beige fat with respect to developmental origin and regulation, and displays enhanced glucose oxidation. We therefore refer to it as glycolytic beige fat. Mechanistically, we identify GA-binding protein α as a regulator of glycolytic beige adipocyte differentiation through a myogenic intermediate. Our study reveals a non-canonical adaptive mechanism by which thermal stress induces progenitor cell plasticity and recruits a distinct form of thermogenic cell that is required for energy homeostasis and survival

    Colloidal Metal-Halide Perovskite Nanoplatelets: Thickness-Controlled Synthesis, Properties, and Application in Light-Emitting Diodes.

    Get PDF
    Colloidal metal-halide perovskite nanocrystals (MHP NCs) are gaining significant attention for a wide range of optoelectronics applications owing to their exciting properties, such as defect tolerance, near-unity photoluminescence quantum yield, and tunable emission across the entire visible wavelength range. Although the optical properties of MHP NCs are easily tunable through their halide composition, they suffer from light-induced halide phase segregation that limits their use in devices. However, MHPs can be synthesized in the form of colloidal nanoplatelets (NPls) with monolayer (ML)-level thickness control, exhibiting strong quantum confinement effects, and thus enabling tunable emission across the entire visible wavelength range by controlling the thickness of bromide or iodide-based lead-halide perovskite NPls. In addition, the NPls exhibit narrow emission peaks, have high exciton binding energies, and a higher fraction of radiative recombination compared to their bulk counterparts, making them ideal candidates for applications in light-emitting diodes (LEDs). This review discusses the state-of-the-art in colloidal MHP NPls: synthetic routes, thickness-controlled synthesis of both organic-inorganic hybrid and all-inorganic MHP NPls, their linear and nonlinear optical properties (including charge-carrier dynamics), and their performance in LEDs. Furthermore, the challenges associated with their thickness-controlled synthesis, environmental and thermal stability, and their application in making efficient LEDs are discussed

    Direct linearly polarized electroluminescence from perovskite nanoplatelet superlattices

    Get PDF
    Polarized light is critical for a wide range of applications, but is usually generated by filtering unpolarized light, which leads to substantial energy losses and requires additional optics. Here we demonstrate the direct emission of linearly polarized light from light-emitting diodes made of CsPbI3 perovskite nanoplatelet superlattices. The use of solvents with different vapour pressures enables the self-assembly of the nanoplatelets with fine control over their orientation (either face-up or edge-up) and therefore their transition dipole moment. As a result of the highly uniform alignment of the nanoplatelets, as well as their strong quantum and dielectric confinement, large exciton fine-structure splitting is achieved at the film level, leading to pure red light-emitting diodes with linearly polarized electroluminescence exhibiting a high degree of polarization of 74.4% without any photonic structures. This work demonstrates the potential of perovskite nanoplatelets as a promising source of linearly polarized light, opening up the development of next-generation three-dimensional displays and optical communications from a highly versatile, solution-processable system

    Large-scale Synthesis of β-SiC Nanochains and Their Raman/Photoluminescence Properties

    Get PDF
    Although the SiC/SiO2 nanochain heterojunction has been synthesized, the chained homogeneous nanostructure of SiC has not been reported before. Herein, the novel β-SiC nanochains are synthesized assisted by the AAO template. The characterized results demonstrate that the nanostructures are constructed by spheres of 25–30 nm and conjoint wires of 15–20 nm in diameters. Raman and photoluminescence measurements are used to explore the unique optical properties. A speed-alternating vapor–solid (SA-VS) growth mechanism is proposed to interpret the formation of this typical nanochains. The achieved nanochains enrich the species of one-dimensional (1D) nanostructures and may hold great potential applications in nanotechnology

    Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR-overexpressing glioblastoma

    Get PDF
    BACKGROUND: We previously identified brain type fatty acid-binding protein (FABP7) as a prognostic marker for patients with glioblastoma (GBM). Increased expression of FABP7 is associated with reduced survival. To investigate possible molecular mechanisms underlying this association, we compared the expression and subcellular localization of FABP7 in non-tumor brain tissues with different types of glioma, and examined the expression of FABP7 and epidermal growth factor receptor (EGFR) in GBM tumors. METHODS: Expression of FABP7 in non-tumor brain and glioma specimens was examined using immunohistochemistry, and its correlation to the clinical behavior of the tumors was analyzed. We also analyzed the association between FABP7 and EGFR expression in different sets of GBM specimens using published DNA microarray datasets and semi-quantitative immunohistochemistry. In vitro migration was examined using SF763 glioma cell line. RESULTS: FABP7 was present in a unique population of glia in normal human brain, and its expression was increased in a subset of reactive astrocytes. FABP7 immunoreactivity in grade I pilocytic astrocytoma was predominantly cytoplasmic, whereas nuclear FABP7 was detected in other types of infiltrative glioma. Nuclear, not cytoplasmic, FABP7 immunoreactivity was associated with EGFR overexpression in GBM (N = 61, p = 0.008). Expression of the FABP7 gene in GBM also correlated with the abundance of EGFR mRNA in our previous microarray analyses (N = 34, p = 0.016) and an independent public microarray dataset (N = 28, p = 0.03). Compared to those negative for both markers, nuclear FABP7-positive/EGFR-positive and nuclear FABP7-positive/EGFR-negative GBM tumors demonstrated shortest survival, whereas those only positive for EGFR had intermediate survival. EGFR activation increased nuclear FABP7 immunoreactivity in a glioma cell line in vitro, and inhibition of FABP7 expression suppressed EGF-induced glioma-cell migration. Our data suggested that in EGFR-positive GBM the presence of nuclear FABP7 immunoreactivity increases the risk of poor prognosis CONCLUSION: In this study, we identified a possible mechanism as the basis of the association between nuclear FABP7 and poor prognosis of GBM. FABP7 expression can be found in all grades of astrocytoma, but neoplastic cells with nuclear FABP7 were only seen in infiltrative types of tumors. Nuclear FABP7 may be induced by EGFR activation to promote migration of GBM tumor cells. Positive nuclear FABP7 and EGFR overexpression correlated with short survival in EGFR-positive GBM patients. Therefore, nuclear FABP7 immunoreactivity could be used to monitor the progression of EGFR-overexpressed GBM

    Search for Charged Higgs Bosons in e+e- Collisions at \sqrt{s} = 189 GeV

    Full text link
    A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at a centre-of-mass energy of 188.6 GeV, corresponding to an integrated luminosity of 176.4 pb^-1. Higgs decays into a charm and a strange quark or into a tau lepton and its associated neutrino are considered. The observed events are consistent with the expectations from Standard Model background processes. A lower limit of 65.5 GeV on the charged Higgs mass is derived at 95 % confidence level, independent of the decay branching ratio Br(H^{+/-} -> tau nu)

    Low temperature exposure induces browning of bone marrow stem cell derived adipocytes in vitro

    Get PDF
    Brown and beige adipocytes are characterised as expressing the unique mitochondrial uncoupling protein (UCP)1 for which the primary stimulus in vivo is cold exposure. The extent to which cold-induced UCP1 activation can also be achieved in vitro, and therefore perform a comparable cellular function, is unknown. We report an in vitro model to induce adipocyte browning using bone marrow (BM) derived mesenchymal stem cells (MSC), which relies on differentiation at 32°C instead of 37°C. The low temperature promoted browning in adipogenic cultures, with increased adipocyte differentiation and upregulation of adipogenic and thermogenic factors, especially UCP1. Cells exhibited enhanced uncoupled respiration and metabolic adaptation. Cold-exposed differentiated cells showed a marked translocation of leptin to adipocyte nuclei, suggesting a previously unknown role for leptin in the browning process. These results indicate that BM-MSC can be driven to forming beige-like adipocytes in vitro by exposure to a reduced temperature. This in vitro model will provide a powerful tool to elucidate the precise role of leptin and related hormones in hitherto functions in the browning process
    corecore