35 research outputs found

    Rebalanced Zero-shot Learning

    Full text link
    Zero-shot learning (ZSL) aims to identify unseen classes with zero samples during training. Broadly speaking, present ZSL methods usually adopt class-level semantic labels and compare them with instance-level semantic predictions to infer unseen classes. However, we find that such existing models mostly produce imbalanced semantic predictions, i.e. these models could perform precisely for some semantics, but may not for others. To address the drawback, we aim to introduce an imbalanced learning framework into ZSL. However, we find that imbalanced ZSL has two unique challenges: (1) Its imbalanced predictions are highly correlated with the value of semantic labels rather than the number of samples as typically considered in the traditional imbalanced learning; (2) Different semantics follow quite different error distributions between classes. To mitigate these issues, we first formalize ZSL as an imbalanced regression problem which offers empirical evidences to interpret how semantic labels lead to imbalanced semantic predictions. We then propose a re-weighted loss termed Re-balanced Mean-Squared Error (ReMSE), which tracks the mean and variance of error distributions, thus ensuring rebalanced learning across classes. As a major contribution, we conduct a series of analyses showing that ReMSE is theoretically well established. Extensive experiments demonstrate that the proposed method effectively alleviates the imbalance in semantic prediction and outperforms many state-of-the-art ZSL methods. Our code is available at https://github.com/FouriYe/ReZSL-TIP23.Comment: Accepted to IEEE Transactions on Image Processing (TIP) 202

    L-band fiber laser mode-locked by all-polarization maintaining nonlinear polarization rotation

    Get PDF
    For the first time in the soliton regime, we demonstrated an L-band fiber laser mode-locked by all polarization-maintaining nonlinear polarization rotation. The self-starting laser centered at 1586.4 nm with long-term stability

    L-band mode-locked fiber laser using all polarization-maintaining nonlinear polarization rotation

    Get PDF
    For the first time, to the best of our knowledge, in the soliton regime, we demonstrate an L-band fiber laser mode-locked by all polarization-maintaining (all-PM) nonlinear polarization rotation (NPR). A numerical study suggests that lengthening the NPR section boosts modulation depth and lowers saturation power of the artificial saturable absorber (SA). With the longest NPR section to date (21 m), the laser emits 1.25-ps soliton pulses at 1584.2 nm and a 3.9-MHz repetition rate. Our laser provides a promising L-band seed source, exhibiting improved repeatability and stability compared with non-PM L-band pulse fiber lasers

    Variants in the SNCA Locus Are Associated With the Progression of Parkinson's Disease

    Get PDF
    Background: Genetic factors have a well-known influence on Parkinson's disease (PD) susceptibility; however, no previous studies have investigated the influence of SNCA mutations on the natural history of PD using a prospective follow-up study. The aim of this study was to assess the risk factors of variation of SNCA on the prognosis symptoms of PD patients.Methods: Fifty PD patients were recruited with 38 v-PSG confirmed PD+RBD patients, and the median follow-up period was 30 months. All patients underwent a comprehensive clinical evaluation at baseline and follow-up, and six SNPs of SNCA (rs356165, rs3857053, rs1045722, rs894278, rs356186, and rs356219) were analyzed. Cox proportional hazards regression models and Kaplan–Meier plot analysis were used to assess the associations between the SNCA variation and the primary and secondary progression outcomes.Results: Based on the clinical assessment, we found that hyposmia was substantially easier to aggravate. Regression analysis showed that patients with the T allele of rs1045722 and the G allele of rs356219 presented a 34 and 20% decreased risk of progression to the H-Y stage, respectively (p = 0.022; p = 0.005). While for rs894278, G allele patients showed a 47% decreased risk of olfactory dysfunction (p = 0.029). Further subgroup analysis showed that PD+RBD patients with rs356219/G exhibited a 30% and 20% decreased risk of progression on the H-Y stage and MoCA score (p = 0.038; p = 0.045).Conclusions: Our results indicated that genetic variation in SNCA may contribute to variability natural progression of PD and could possibly be used as a prognostic marker

    Cognitive Profile of Patients With Mitochondrial Chronic Progressive External Ophthalmoplegia

    No full text
    Mitochondrial chronic progressive external ophthalmoplegia (CPEO) is a major manifestation of human mitochondrial encephalomyopathies. Previous studies have shown cognitive deficits in patients with mitochondrial diseases. However, these studies often included patients with heterogeneous subtypes of mitochondrial diseases. Here, we aimed to provide a better cognitive profile of patients with CPEO by applying a comprehensive battery of neuropsychological assessments in a pure sample of patients with CPEO. We recruited 28 patients with CPEO (19 women, age 16-62 years) and 38 age- and education-matched healthy control subjects (25 women, age 16-60 years). The neuropsychological assessments covered global cognition and five cognitive domains (executive functions, language, working memory, memory, and visuospatial functions). We found that the patients were impaired in global cognition [Montreal Cognitive Assessment (MoCA)], executive functions [Trail Making Test Part B (TMT-B)], and language [Boston Naming Test (BNT)], but not in working memory, memory or visuospatial functions. Moreover, individual patients&#39; performances in the TMT-B (completion time) were predicted by the severity of non-ophthalmoplegia mitochondrial symptoms/signs [Newcastle Mitochondrial Disease Adult Scale (NMDAS)] and duration of the mitochondrial disease (years). Namely, patients with more severe non-ophthalmoplegia mitochondrial symptoms/signs and a longer disease duration took a longer time to complete the TMT-B. No clinical measures predicted individual patients&#39; performances in the BNT.</p

    Relative Attitude Estimation for a Uniform Motion and Slowly Rotating Noncooperative Spacecraft

    No full text
    This paper presents a novel relative attitude estimation approach for a uniform motion and slowly rotating noncooperative spacecraft. It is assumed that the uniform motion and slowly rotating noncooperative chief spacecraft is in failure or out of control and there is no a priori rotation rate information. We utilize a very fast binary descriptor based on binary robust independent elementary features (BRIEF) to obtain the features of the target, which are rotational invariance and resistance to noise. And then, we propose a novel combination of single candidate random sample consensus (RANSAC) with extended Kalman filter (EKF) that makes use of the available prior probabilistic information from the EKF in the RANSAC model hypothesis stage. The advantage of this combination obviously reduces the sample size to only one, which results in large computational savings without the loss of accuracy. Experimental results from real image sequence of a real model target show that the relative angular error is about 3.5% and the mean angular velocity error is about 0.1 deg/s

    Task Allocation with Geographic Partition in Spatial Crowdsourcing

    No full text

    Tracking Response Dynamics of Sequential Working Memory in Patients With Mild Parkinson's Disease

    No full text
    The ability to sequence thoughts and actions is impaired in Parkinson's disease (PD). In PD, a distinct error pattern has been found in the offline performance of sequential working memory. This study examined how PD's performance of sequential working memory unfolds over time using mouse tracking techniques. Non-demented patients with mild PD (N = 40) and healthy controls (N = 40) completed a computerized digit ordering task with a computer mouse. We measured response dynamics in terms of the initiation time, ordering time, movement time, and area under the movement trajectory curve. This approach allowed us to distinguish between the cognitive processes related to sequence processing before the actual movement (initiation time and ordering time) and the execution processes of the actual movement (movement time and area under the curve). PD patients showed longer initiation times, longer movement times, and more constrained movement trajectories than healthy controls. The initiation time and ordering time negatively correlated with the daily exposure to levodopa and D2/3 receptor agonists, respectively. The movement time positively correlated with the severity of motor symptoms. We demonstrated an altered temporal profile of sequential working memory in PD. Stimulating D1 and D2/3 receptors might speed up the maintenance and manipulation of sequences, respectively

    Sample Size Re-estimation Design in Phase II Dose Finding Study with Multiple Dose Groups: Frequentist and Bayesian Methods

    Full text link
    Unblinded sample size re-estimation (SSR) is often planned in a clinical trial when there is large uncertainty about the true treatment effect. For Proof-of Concept (PoC) in a Phase II dose finding study, contrast test can be adopted to leverage information from all treatment groups. In this article, we propose two-stage SSR designs using frequentist conditional power and Bayesian posterior predictive power for both single and multiple contrast tests. The Bayesian SSR can be implemented under a wide range of prior settings to incorporate different prior knowledge. Taking the adaptivity into account, all type I errors of final analysis in this paper are rigorously protected. Simulation studies are carried out to demonstrate the advantages of unblinded SSR in multi-arm trials
    corecore