91 research outputs found
Prediction of the C-13 NMR chemical shifts of organic species adsorbed on H-ZSM-5 zeolite by the ONIOM-GIAO method
The ONIOM-GIAO method has been used to accurately predict C-13 NMR chemical shifts for a series of organic species adsorbed on H-ZSM-5 zeolite. This is useful for the spectroscopic identification of complicated catalytic systems
Encoding Enhanced Complex CNN for Accurate and Highly Accelerated MRI
Magnetic resonance imaging (MRI) using hyperpolarized noble gases provides a
way to visualize the structure and function of human lung, but the long imaging
time limits its broad research and clinical applications. Deep learning has
demonstrated great potential for accelerating MRI by reconstructing images from
undersampled data. However, most existing deep conventional neural networks
(CNN) directly apply square convolution to k-space data without considering the
inherent properties of k-space sampling, limiting k-space learning efficiency
and image reconstruction quality. In this work, we propose an encoding enhanced
(EN2) complex CNN for highly undersampled pulmonary MRI reconstruction. EN2
employs convolution along either the frequency or phase-encoding direction,
resembling the mechanisms of k-space sampling, to maximize the utilization of
the encoding correlation and integrity within a row or column of k-space. We
also employ complex convolution to learn rich representations from the complex
k-space data. In addition, we develop a feature-strengthened modularized unit
to further boost the reconstruction performance. Experiments demonstrate that
our approach can accurately reconstruct hyperpolarized 129Xe and 1H lung MRI
from 6-fold undersampled k-space data and provide lung function measurements
with minimal biases compared with fully-sampled image. These results
demonstrate the effectiveness of the proposed algorithmic components and
indicate that the proposed approach could be used for accelerated pulmonary MRI
in research and clinical lung disease patient care
A Better Anti-Diabetic Recombinant Human Fibroblast Growth Factor 21 (rhFGF21) Modified with Polyethylene Glycol
As one of fibroblast growth factor (FGF) family members, FGF21 has been extensively investigated for its potential as a drug candidate to combat metabolic diseases. In the present study, recombinant human FGF21 (rhFGF21) was modified with polyethylene glycol (PEGylation) in order to increase its in vivo biostabilities and therapeutic potency. At N-terminal residue rhFGF21 was site-selectively PEGylated with mPEG20 kDa-butyraldehyde. The PEGylated rhFGF21 was purified to near homogeneity by Q Sepharose anion-exchange chromatography. The general structural and biochemical features as well as anti-diabetic effects of PEGylated rhFGF21 in a type 2 diabetic rat model were evaluated. By N-terminal sequencing and MALDI-TOF mass spectrometry, we confirmed that PEG molecule was conjugated only to the N-terminus of rhFGF21. The mono-PEGylated rhFGF21 retained the secondary structure, consistent with the native rhFGF21, but its biostabilities, including the resistance to physiological temperature and trypsinization, were significantly enhanced. The in vivo immunogenicity of PEGylated rhFGF21 was significantly decreased, and in vivo half-life time was significantly elongated. Compared to the native form, the PEGylated rhFGF21 had a similar capacity of stimulating glucose uptake in 3T3-L1 cells in vitro, but afforded a significantly long effect on reducing blood glucose and triglyceride levels in the type 2 diabetic animals. These results suggest that the PEGylated rhFGF21 is a better and more effective anti-diabetic drug candidate than the native rhFGF21 currently available. Therefore, the PEGylated rhFGF21 may be potentially applied in clinics to improve the metabolic syndrome for type 2 diabetic patients
A Novel Solid-Phase Site-Specific PEGylation Enhances the In Vitro and In Vivo Biostabilty of Recombinant Human Keratinocyte Growth Factor 1
Keratinocyte growth factor 1 (KGF-1) has proven useful in the treatment of pathologies associated with dermal adnexae, liver, lung, and the gastrointestinal tract diseases. However, poor stability and short plasma half-life of the protein have restricted its therapeutic applications. While it is possible to improve the stability and extend the circulating half-life of recombinant human KGF-1 (rhKGF-1) using solution-phase PEGylation, such preparations have heterogeneous structures and often low specific activities due to multiple and/or uncontrolled PEGylation. In the present study, a novel solid-phase PEGylation strategy was employed to produce homogenous mono-PEGylated rhKGF-1. RhKGF-1 protein was immobilized on a Heparin-Sepharose column and then a site-selective PEGylation reaction was carried out by a reductive alkylation at the N-terminal amino acid of the protein. The mono-PEGylated rhKGF-1, which accounted for over 40% of the total rhKGF-1 used in the PEGylation reaction, was purified to homogeneity by SP Sepharose ion-exchange chromatography. Our biophysical and biochemical studies demonstrated that the solid-phase PEGylation significantly enhanced the in vitro and in vivo biostability without affecting the over all structure of the protein. Furthermore, pharmacokinetic analysis showed that modified rhKGF-1 had considerably longer plasma half-life than its intact counterpart. Our cell-based analysis showed that, similar to rhKGF-1, PEGylated rhKGF-1 induced proliferation in NIH 3T3 cells through the activation of MAPK/Erk pathway. Notably, PEGylated rhKGF-1 exhibited a greater hepatoprotection against CCl4-induced injury in rats compared to rhKGF-1
Review of advanced road materials, structures, equipment, and detection technologies
As a vital and integral component of transportation infrastructure, pavement has a direct and tangible impact on socio-economic sustainability. In recent years, an influx of groundbreaking and state-of-the-art materials, structures, equipment, and detection technologies related to road engineering have continually and progressively emerged, reshaping the landscape of pavement systems. There is a pressing and growing need for a timely summarization of the current research status and a clear identification of future research directions in these advanced and evolving technologies. Therefore, Journal of Road Engineering has undertaken the significant initiative of introducing a comprehensive review paper with the overarching theme of βadvanced road materials, structures, equipment, and detection technologiesβ. This extensive and insightful review meticulously gathers and synthesizes research findings from 39 distinguished scholars, all of whom are affiliated with 19 renowned universities or research institutions specializing in the diverse and multidimensional field of highway engineering. It covers the current state and anticipates future development directions in the four major and interconnected domains of road engineering: advanced road materials, advanced road structures and performance evaluation, advanced road construction equipment and technology, and advanced road detection and assessment technologies
Design and simulation of precise parking control for shallow rail transit based on granular function
A new type of shallow rail transit was designed,which was suitable for the shallow underground of densely populated and congested areas.The surface was covered with transparent glass with the small rail train running in the shallow trenches.A corresponding train model was established based on the system,and a fuzzy control algorithm with granular function was proposed.Simultaneously,a proportional-integral-derivative(PID) controller and a fuzzy granular function controller were designed to control the speed of precise parking.The simulation experimental results showed that the tracking performance of the design was better than that of the PID controller,and the parking accuracy was also improved
- β¦