383 research outputs found
Template nanowires for spintronics applications: nanomagnet microwave resonators functioning in zero applied magnetic field
Low-cost spintronic devices functioning in zero applied magnetic field are
required for bringing the idea of spin-based electronics into the real-world
industrial applications. Here we present first microwave measurements performed
on nanomagnet devices fabricated by electrodeposition inside porous membranes.
In the paper, we discuss in details a microwave resonator consisting of three
nanomagnets, which functions in zero external magnetic field. By applying a
microwave signal at a particular frequency, the magnetization of the middle
nanomagnet experiences the ferromagnetic resonance (FMR), and the device
outputs a measurable direct current (spin-torque diode effect). Alternatively,
the nanodevice can be used as a microwave oscillator functioning in zero field.
In order to test the resonators at microwave frequencies, we developed a simple
measurement set-up.Comment: 21 pages (main text - 13 pages + Supporting Information
Optically switched magnetism in photovoltaic perovskite CHNH(Mn:Pb)I
The demand for ever-increasing density of information storage and speed of
manipulation boosts an intense search for new magnetic materials and novel ways
of controlling the magnetic bit. Here, we report the synthesis of a
ferromagnetic photovoltaic CHNH(Mn:Pb)I material in which the
photo-excited electrons rapidly melt the local magnetic order through the
Ruderman-Kittel-Kasuya-Yosida interactions without heating up the spin system.
Our finding offers an alternative, very simple and efficient way of optical
spin control, and opens an avenue for applications in low power, light
controlling magnetic devices
Atomic and Electronic Structure of a Rashba - Junction at the BiTeI Surface
The non-centrosymmetric semiconductor BiTeI exhibits two distinct surface
terminations that support spin-split Rashba surface states. Their ambipolarity
can be exploited for creating spin-polarized - junctions at the
boundaries between domains with different surface terminations. We use scanning
tunneling microscopy/spectroscopy (STM/STS) to locate such junctions and
investigate their atomic and electronic properties. The Te- and I-terminated
surfaces are identified owing to their distinct chemical reactivity, and an
apparent height mismatch of electronic origin. The Rashba surface states are
revealed in the STS spectra by the onset of a van Hove singularity at the band
edge. Eventually, an electronic depletion is found on interfacial Te atoms,
consistent with the formation of a space charge area in typical -
junctions.Comment: 5 pages, 4 figure
Strong out-of-plane magnetic anisotropy of Fe adatoms on BiTe
The electronic and magnetic properties of individual Fe atoms adsorbed on the
surface of the topological insulator BiTe(111) are investigated.
Scanning tunneling microscopy and spectroscopy prove the existence of two
distinct types of Fe species, while our first-principles calculations assign
them to Fe adatoms in the hcp and fcc hollow sites. The combination of x-ray
magnetic circular dichroism measurements and angular dependent magnetization
curves reveals out-of-plane anisotropies for both species with anisotropy
constants of meV/atom and meV/atom. These values are well in line with the results of
calculations.Comment: 6 pages, 3 figure
Grain Boundaries in Graphene on SiC(000) Substrate
Grain boundaries in epitaxial graphene on the SiC(000) substrate are
studied using scanning tunneling microscopy and spectroscopy. All investigated
small-angle grain boundaries show pronounced out-of-plane buckling induced by
the strain fields of constituent dislocations. The ensemble of observations
allows to determine the critical misorientation angle of buckling transition
. Periodic structures are found among the flat
large-angle grain boundaries. In particular, the observed highly ordered grain boundary is assigned to the previously
proposed lowest formation energy structural motif composed of a continuous
chain of edge-sharing alternating pentagons and heptagons. This periodic grain
boundary defect is predicted to exhibit strong valley filtering of charge
carriers thus promising the practical realization of all-electric valleytronic
devices
Observation of Weyl nodes in robust type-II Weyl semimetal WP2
Distinct to type-I Weyl semimetals (WSMs) that host quasiparticles described
by the Weyl equation, the energy dispersion of quasiparticles in type-II WSMs
violates Lorentz invariance and the Weyl cones in the momentum space are
tilted. Since it was proposed that type-II Weyl fermions could emerge from
(W,Mo)Te2 and (W,Mo)P2 families of materials, a large numbers of experiments
have been dedicated to unveil the possible manifestation of type-II WSM, e.g.
the surface-state Fermi arcs. However, the interpretations of the experimental
results are very controversial. Here, using angle-resolved photoemission
spectroscopy supported by the first-principles calculations, we probe the
tilted Weyl cone bands in the bulk electronic structure of WP2 directly, which
are at the origin of Fermi arcs at the surfaces and transport properties
related to the chiral anomaly in type-II WSMs. Our results ascertain that due
to the spin-orbit coupling the Weyl nodes originate from the splitting of
4-fold degenerate band-crossing points with Chern numbers C = 2 induced by
the crystal symmetries of WP2, which is unique among all the discovered WSMs.
Our finding also provides a guiding line to observe the chiral anomaly which
could manifest in novel transport properties.Comment: 13 pages, 3 figure
BiTeCl and BiTeBr: a comparative high-pressure optical study
We here report a detailed high-pressure infrared transmission study of BiTeCl
and BiTeBr. We follow the evolution of two band transitions: the optical
excitation between two Rashba-split conduction bands, and the
absorption across the band gap. In the low pressure range, ~GPa,
for both compounds is approximately constant with pressure and
decreases, in agreement with band structure calculations. In BiTeCl, a clear
pressure-induced phase transition at 6~GPa leads to a different ground state.
For BiTeBr, the pressure evolution is more subtle, and we discuss the
possibility of closing and reopening of the band gap. Our data is consistent
with a Weyl phase in BiTeBr at 56~GPa, followed by the onset of a structural
phase transition at 7~GPa.Comment: are welcom
Experimentally Engineering the Edge Termination of Graphene Nanoribbons
The edges of graphene nanoribbons (GNRs) have attracted much interest due to
their potentially strong influence on GNR electronic and magnetic properties.
Here we report the ability to engineer the microscopic edge termination of high
quality GNRs via hydrogen plasma etching. Using a combination of
high-resolution scanning tunneling microscopy and first-principles
calculations, we have determined the exact atomic structure of plasma-etched
GNR edges and established the chemical nature of terminating functional groups
for zigzag, armchair and chiral edge orientations. We find that the edges of
hydrogen-plasma-etched GNRs are generally flat, free of structural
reconstructions and are terminated by hydrogen atoms with no rehybridization of
the outermost carbon edge atoms. Both zigzag and chiral edges show the presence
of edge states.Comment: 16+9 pages, 3+4 figure
Magnetic excitations and electronic interactions in SrCuTeO: a spin-1/2 square lattice Heisenberg antiferromagnet
SrCuTeO presents an opportunity for exploring low-dimensional
magnetism on a square lattice of Cu ions. We employ ab initio
multi-reference configuration interaction calculations to unravel the Cu
electronic structure and to evaluate exchange interactions in SrCuTeO.
The latter results are validated by inelastic neutron scattering using linear
spin-wave theory and series-expansion corrections for quantum effects to
extract true coupling parameters. Using this methodology, which is quite
general, we demonstrate that SrCuTeO is an almost realization of a
nearest-neighbor Heisenberg antiferromagnet but with relatively weak coupling
of 7.18(5) meV.Comment: 10 pages, 7 figure
- …