259 research outputs found

    Evaluating predictive pharmacogenetic signatures of adverse events in colorectal cancer patients treated with fluoropyrimidines

    Get PDF
    The potential clinical utility of genetic markers associated with response to fluoropyrimidine treatment in colorectal cancer patients remains controversial despite extensive study. Our aim was to test the clinical validity of both novel and previously identified markers of adverse events in a broad clinical setting. We have conducted an observational pharmacogenetic study of early adverse events in a cohort study of 254 colorectal cancer patients treated with 5-fluorouracil or capecitabine. Sixteen variants of nine key folate (pharmacodynamic) and drug metabolising (pharmacokinetic) enzymes have been analysed as individual markers and/or signatures of markers. We found a significant association between TYMP S471L (rs11479) and early dose modifications and/or severe adverse events (adjusted OR = 2.02 [1.03; 4.00], p = 0.042, adjusted OR = 2.70 [1.23; 5.92], p = 0.01 respectively). There was also a significant association between these phenotypes and a signature of DPYD mutations (Adjusted OR = 3.96 [1.17; 13.33], p = 0.03, adjusted OR = 6.76 [1.99; 22.96], p = 0.002 respectively). We did not identify any significant associations between the individual candidate pharmacodynamic markers and toxicity. If a predictive test for early adverse events analysed the TYMP and DPYD variants as a signature, the sensitivity would be 45.5 %, with a positive predictive value of just 33.9 % and thus poor clinical validity. Most studies to date have been under-powered to consider multiple pharmacokinetic and pharmacodynamic variants simultaneously but this and similar individualised data sets could be pooled in meta-analyses to resolve uncertainties about the potential clinical utility of these markers

    Human-Specific Evolution and Adaptation Led to Major Qualitative Differences in the Variable Receptors of Human and Chimpanzee Natural Killer Cells

    Get PDF
    Natural killer (NK) cells serve essential functions in immunity and reproduction. Diversifying these functions within individuals and populations are rapidly-evolving interactions between highly polymorphic major histocompatibility complex (MHC) class I ligands and variable NK cell receptors. Specific to simian primates is the family of Killer cell Immunoglobulin-like Receptors (KIR), which recognize MHC class I and associate with a range of human diseases. Because KIR have considerable species-specificity and are lacking from common animal models, we performed extensive comparison of the systems of KIR and MHC class I interaction in humans and chimpanzees. Although of similar complexity, they differ in genomic organization, gene content, and diversification mechanisms, mainly because of human-specific specialization in the KIR that recognizes the C1 and C2 epitopes of MHC-B and -C. Humans uniquely focused KIR recognition on MHC-C, while losing C1-bearing MHC-B. Reversing this trend, C1-bearing HLA-B46 was recently driven to unprecedented high frequency in Southeast Asia. Chimpanzees have a variety of ancient, avid, and predominantly inhibitory receptors, whereas human receptors are fewer, recently evolved, and combine avid inhibitory receptors with attenuated activating receptors. These differences accompany human-specific evolution of the A and B haplotypes that are under balancing selection and differentially function in defense and reproduction. Our study shows how the qualitative differences that distinguish the human and chimpanzee systems of KIR and MHC class I predominantly derive from adaptations on the human line in response to selective pressures placed on human NK cells by the competing needs of defense and reproduction

    Association of KIR2DS1 and KIR2DS3 with fatal outcome in Ebola virus infection

    Get PDF
    Zaïre ebolavirus (ZEBOV) infection rapidly outruns the host's immunity and leads to death within a week. Fatal cases have been associated with an aberrant innate, proinflammatory immune response followed by a suppressed adaptive response leading to the rapid depletion of peripheral NK cells and lymphocytes. A critical role for NK cells has been suggested but not elucidated. In this genetic study, we investigated the association of KIR genotype with disease outcome by comparing genotypes of a Gabonese control population, IgG+ contacts, survivors, and fatalities of ZEBOV infection. We showed that the activating KIR2DS1 and KIR2DS3 genes associate with fatal outcome in Ebola virus infection. In addition, this study brings supplemental evidence in favor of the specificity of the IgG+ contact population. The outcome of fulminating Ebola virus infection could depend in part on the host's inherited KIR gene repertoire. This supports a key role for KIRs in disease susceptibility to infections

    KIR gene content diversity in four Iranian populations

    Get PDF
    Killer cell immunoglobulin-like receptors (KIR) regulate natural killer cell response against infection and malignancy. KIR genes are variable in the number and type, thereby discriminating individuals and populations. Herein, we analyzed the KIR gene content diversity in four native populations of Iran. The KIR genomic diversity was comparable between Bakhtiari and Persian and displayed a balance of A and B KIR haplotypes, a trend reported in Caucasian and African populations. The KIR gene content profiles of Arab and Azeri were comparable and displayed a preponderance of B haplotypes, a scenario reported in the natives of America, India, and Australia. A majority of the B haplotype carriers of Azeri and Arab had a centromeric gene-cluster (KIR2DS2-2DL2-2DS3-2DL5). Remarkably, this cluster was totally absent from the American natives but occurred at highest frequencies in the natives of India and Australia in combination with another gene cluster at the telomeric region (KIR3DS1-2DL5-2DS5-2DS1). Therefore, despite having similar frequencies of B haplotypes, the occurrence of B haplotype-specific KIR genes, such as 2DL2, 2DL5, 3DS1, 2DS1, 2DS2, 2DS3, and 2DS5 in Azeri and Arab were substantially different from the natives of America, India, and Australia. In conclusion, each Iranian population exhibits distinct KIR gene content diversity, and the Indo-European KIR genetic signatures of the Iranians concur with geographic proximity, linguistic affinity, and human migrations

    Overexpression of HMGA1 promotes anoikis resistance and constitutive Akt activation in pancreatic adenocarcinoma cells

    Get PDF
    HMGA1 proteins are architectural transcription factors that are overexpressed by pancreatic adenocarcinomas. Roles of HMGA1 in mediating the malignant phenotype of this cancer are poorly understood. We tested the hypothesis that overexpression of HMGA1 promotes resistance to anoikis (apoptosis induced by anchorage deprivation) in pancreatic cancer cells. HMGA1 cDNA was stably transfected into MiaPaCa2 human pancreatic adenocarcinoma cells (which have low baseline expression levels of HMGA1). Cells were grown in suspension on PolyHEMA-coated plates and their susceptibility to anoikis was assayed using flow cytometry. Overexpression of HMGA1 was associated with marked reductions in susceptibility to anoikis in concert with increases in Akt phosphorylation (Ser473) and in Akt kinase activity and with reductions in caspase 3 activation. Inhibition of phosphoinositidyl-3 (PI3-K)/Akt pathway with either the small molecule inhibitor LY294002 or dominant-negative Akt resulted in reversal of anoikis resistance induced by HMGA1 overexpression. Further, RNA interference-mediated HMGA1 silencing in MiaPaCa2 and BxPC3 (a human pancreatic adenocarcinoma cell line with high baseline levels of HMGA1 expression) cells resulted in significant increases in susceptibility to anoikis. Our findings suggest HMGA1 promotes anoikis resistance through a PI3-K/Akt-dependent mechanism. Given the putative associations between anoikis resistance and metastatic potential, HMGA1 represents a potential therapeutic target in pancreatic adenocarcinoma

    Anti-invasive and antiangiogenic effects of MMI-166 on malignant glioma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The constitutive overexpression of matrix metalloproteinases (MMPs) is frequently observed in malignant tumours. In particular, MMP-2 and MMP-9 have been reported to be closely associated with invasion and angiogenesis in malignant gliomas. Our study aimed to evaluate the antitumour effects of MMI-166 (Nalpha-[4-(2-Phenyl-2H- tetrazole-5-yl) phenyl sulfonyl]-D-tryptophan), a third generation MMP inhibitor, on three human glioma cell lines (T98G, U87MG, and ONS12) in vitro and in vivo.</p> <p>Methods</p> <p>The effects of MMI-166 on the gelatinolytic activity was analysed by gelatine zymography. The anti-invasive effect of MMI-166 was analysed by an in vitro invasion assay. An in vitro angiogenesis assay was also performed. In vitro growth inhibition of glioma cells by MMI-166 was determined by the MTT assay. The effect of MMI-166 on an orthotropic implantation model using athymic mice was also evaluated.</p> <p>Results</p> <p>Gelatine zymography revealed that MMP-2 and MMP-9 activities were suppressed by MMI-166. The invasion of glioma cells was suppressed by MMI-166. The angiogenesis assay showed that MMI-166 had a suppressive effect on glioma cell-induced angiogenesis. However, MMI-166 did not suppress glioma cell proliferation in the MTT assay. In vivo, MMI-166 suppressed tumour growth in athymic mice implanted orthotropically with T98G cells and showed an inhibitory effect on tumour-induced angiogenesis and tumour growth. This is the first report of the effect of a third generation MMP inhibitor on malignant glioma cells.</p> <p>Conclusions</p> <p>These results suggest that MMI-166 may have potentially suppressive effects on the invasion and angiogenesis of malignant gliomas.</p

    Study of double pion photoproduction on the deuteron

    Get PDF
    AbstractThe π+π− photoproductions on the proton and deuteron have been studied in a photon energy range of 0.8–1.1 GeV at the Laboratory of Nuclear Science, Tohoku University. Charged pions and protons were detected using Neutral Kaon Spectrometer. We obtained the cross sections for the p(γ,pπ+π−) and d(γ,pπ+π−)n. The quasi-free process with a neutron spectator was extracted by the neutron momentum cut of pn>0.3 GeV/c. The cross section for the Δ++Δ− production was deduced in the non-quasi-free process of the γd→pnπ+π−. It was 13.4±0.4 μb at Eγ=0.82 GeV

    Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1

    Get PDF
    Allotypes of the natural killer (NK) cell receptor KIR3DL1 vary in both NK cell expression patterns and inhibitory capacity upon binding to their ligands, HLA-B Bw4 molecules, present on target cells. Using a sample size of over 1,500 human immunodeficiency virus (HIV)+ individuals, we show that various distinct allelic combinations of the KIR3DL1 and HLA-B loci significantly and strongly influence both AIDS progression and plasma HIV RNA abundance in a consistent manner. These genetic data correlate very well with previously defined functional differences that distinguish KIR3DL1 allotypes. The various epistatic effects observed here for common, distinct KIR3DL1 and HLA-B Bw4 combinations are unprecedented with regard to any pair of genetic loci in human disease, and indicate that NK cells may have a critical role in the natural history of HIV infection
    corecore